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Abstract

5083 Al-Mg is the widely used material in food, chemistry, vehicle, machinery, and con-
struction sectors, as well as in the aviation and space industries. The burnishing is normally
used as the finishing operation for this material with the advantages such as surface roughness,
reduced fracture formation, hardness, fatigue strength, and an increase of the wear resistance.
These positive improvements are dependent on burnishing process parameters such as feed
rate, burnishing force, ball diameter, and a number of revolutions. The study contains de-
termination and optimization of the machining parameters and their effects on the surface
roughness, microhardness, and the strength of 5083 Al-Mg material in the ball burnishing
processes. Multiple regression and ANOVA analysis were performed to identify significant
process parameters. A new Artificial Neural Networks (ANN) model with different neuron
structures and algorithms has also been developed using experimental results to supplement
the multiple regression model as the desired R2 values could not be achieved with the latter.
The ANOVA analysis indicated that both the burnishing force and the number of revolutions
have a significant effect on the surface roughness and hardness with optimums 300 N and 200
rpm, respectively. Results from the two models were compared with each other. The developed
ANN model is shown to estimate the surface roughness and the surface hardness with high
reliability (R2 = 0.999992) without costly experimental trials.

K e y w o r d s: burnishing, surface roughness and hardness, microhardness, strength analysis,
Artificial Neural Networks (ANN)

1. Introduction

The burnishing process is defined as the cold finish-
ing process without machining the surface of the work-
piece. There are many factors affecting the surface
roughness and surface hardness during the ball bur-
nishing process. Some of these factors could be men-
tioned as the physical and mechanical properties of the
workpiece, the chemical composite, the tool material
and tool geometry, the surface quality and rigidity,
the kinematics of the cooling and lubrication equip-
ment, the heat transfer property and liquidity, and
the characteristics of the processing or shaping pro-
cess [1–4]. The purpose of the burnishing process can
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be explained as the improvement of the surface rough-
ness [5–10], wear, corrosion [11–13], fatigue resistance
and tensile strength [11, 12, 14], and the microhard-
ness [15–17] values of the workpiece as well as attain-
ing dimensional precision. This processing method is
preferred because of its high productivity in mass pro-
duction compared to the grinding process.
The burnishing process is applied using different

materials such as aluminum and its alloys (cast Al-
Cu alloy, 7075 T6, AA2014, AA 7178, AA 7075, 6061-
-T6, Al 6061) [1, 11, 15, 17, 18–26] and steel (plastic
formwork steels, steel, heat-processed and tempered
steel, hardened steel, AISI 5140, St37, X5CrNiMo17-
-12-2) [6, 27–38], polymers [39], brass [25, 40], tita-
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Ta b l e 1. Mechanical properties of the 5083 Al-Mg material

Others
Si Fe Cu Mn Mg Cr Zn Ti

Every Sum

0.40 0.40 0.10 0.40–1.00 4.00–4.90 0.05–0.25 0.25 0.15 0.05 0.15

Ta b l e 2. Experimental parameters for 5083 Al-Mg material to be burnished

Burnishing force (N) Feed rate (mm rev−1) Number of revolutions (rpm) Ball diameter (mm)

100-200-300-400 0.15-0.25-0.35-0.45 100-200-300 11.112-13.494-15.08-16.669

nium [35], and copper [25]. An increase in the bur-
nishing force has a positive impact on the surface
roughness and hardness, and distortions may occur
on the surface after specific values of the force. Also,
low feed rate values yield better surface roughness and
hardness. Furthermore, an increase of the ball diame-
ter has a positive effect on the surface roughness and
microhardness. Improved surface roughness values are
obtained with the increase in the ball diameter when
compared to smaller ball diameters. The increase of
the ball diameter also increases the surface hardness
value. As generally expressed in the literature, the sur-
face roughness increases together with the increase in
the number of revolutions (rpm). After a certain num-
ber of revolutions, degradation may also occur on the
material leading to surface deterioration.
The purpose of this study is an experimental ex-

amination of the impacts of the feed rate, burnish-
ing force, ball diameter, and number of revolution
parameters on the surface roughness, microhardness,
and strength in the burnishing process for the 5083
Al-Mg material. The attained results were assessed
with multiple regression analysis, and because the de-
sired R2 value could not be found, an ANN (Artificial
Neural Networks) model was developed. Also, it was
determined which ones of the experimental parame-
ters have the main impact on the surface roughness
and hardness by conducting ANOVA analysis. Finally,
the ANN model was attained by using different neu-
ron structures, and algorithms and the accomplished
experiment result data were then compared.

2. Material and method

The samples of the 5083 Al-Mg material used
in the experiments were prepared in dimensions of
150 × 100 × 10mm3. The mechanical properties of
the material are given in Table 1.
An apparatus which could burnish the prismatic

parts and could be used in the vertical processing cen-
tered milling machine, the tip of which was formed as
ball geometry was used as a crushing tool (Figs. 1a–c).

Fig. 1. Burnishing apparatus (1).

The spring system was used to adjust the burnishing
force during the burnishing and reducing the vibra-
tion that would occur due to the eccentric movement
in the work mill of the bench to a minimum level.
A fixture was designed and manufactured to fix and

unfix the experimental samples to the bench table per-
manently in the same way and connect it rigidly. In
the experiments, a Taksan 40T1500 vertical process-
ing centered CNC milling machine and cooling liquid
were used. Other variable parameters used in the ex-
periment are given in Table 2.
A measurement with four repetitions was carried

out for the surface roughness and hardness out of each
experimental sample. The averages of the measured
values were taken, and the average surface roughness
and hardness values were attained depending on the
processing conditions. The average surface roughness
belonging to the aluminum parts that were not sub-
jected to the burnishing process were measured as
5.26 µm, and the average surface hardness was mea-
sured as 14.6 HB. Mitutoyo Surftest Sj-201 test tool
was used to measure the surface roughness in the ex-
periments, and the Digirock-Rbov test tool was used
to measure the surface hardness.

3. Surface roughness and surface hardness

The impacts of the parameters such as variable



H. Basak et al. / Kovove Mater. 57 2019 61–74 63

feed rate, burnishing force, ball diameter, and a num-
ber of revolutions used during the burnishing process
on the surface roughness and hardness were examined.

3.1. The impact of the burnishing force on the
surface roughness and hardness

By considering all the variables, when the graph-
ics given in Fig. 2a are examined, it can be observed
that the increase of the burnishing force and the num-
ber of revolutions generally has a degradation effect
on the surface roughness. As the compressive force in-
creases, the surface roughness value increases. At the
same time, it could also be seen from the figure that
the increase in the number of revolutions causes the
formation of distortions on the surface.
The minimum surface roughness value (SRMIN),

maximum surface roughness value (SRMAX), average
surface roughness values (SRAVE) and total surface
roughness variation (TSRV) attained in the regional
transitions are given in the graphics. The best surface
roughness value was measured as SRAVE = 0.45 µm
on average under 100 N burnishing force and 100 rpm.
As the number of revolutions increases especially with
the burnishing force of 100, 200, and 300N the surface
roughness increases. The 400N burnishing force max-
imizes the surface roughness at the highest number of
revolutions (i.e., 300 rpm), Fig. 2a.
When the graphics given in Fig. 2b were examined,

in general, it is observed that depending on the num-
ber of revolutions, the burnishing force has a positive
impact on the surface hardness; as the burnishing force
increases, the surface hardness value also increases. At
the same time, it can also be said that the increase
in the number of revolutions causes no significant in-
crease in hardness.
The minimum surface hardness value (SHMIN),

maximum surface hardness value (SHMAX), average
surface hardness values (SHAVE) and the total surface
hardness variation (TSHV) attained in the regional
transitions are given in the graphics. The best surface
hardness value was measured as SHAVE = 34.25 HB
on average under 400 N burnishing force and 300 rpm.

3.2. The impact of the feed rate on the
surface roughness and hardness

When the graphics given in Fig. 3a are examined,
it can be observed that depending on the number of
revolutions, the increase in the feed rate has a nega-
tive impact on the surface roughness. As the feed rate
value increases, the surface roughness value deterio-
rates. On the other hand, an increase in the number of
revolutions causes improvements on the surface rough-
ness. SRMIN, SRMAX, SRAVE, and TSRV in the re-
gional transitions are given in Fig. 3a. The best surface
roughness value was measured on average as SRAVE =

Fig. 2. Effects of the revolutions per minute and burnishing
force on surface roughness (a) and surface hardness (b).

0.37 µm in 0.15mm rev−1 feed rate and 300 rpm. Gen-
erally, lower feed rates (i.e., 0.15 and 0.25mm rev−1)
yield better surface roughness values as compared to
higher feed rates (i.e., 0.35 and 0.45 mm rev−1) espe-
cially at 100 and 200 rpm.
When the graphics in Fig. 3b are examined, in gen-

eral, the surface hardness changes in direct proportion
to the feed rate and changes in inverse proportion with
the number of revolutions. The best hardness value
was attained in the parameters in which the feed rate
is at a maximum level, and a number of revolutions is
at a minimum level. SHMIN, SHMAX, SHAVE, and to-
tal surface hardness variation TSHV values attained
in the regional transitions are given in the graphics.
The best surface hardness value was measured on aver-
age as SHAVE = 34.25 HB at 0.45mm rev−1, 100 rpm.
Regional improvement (∼ 33 HB) was observed in the
surface hardness at 0.15mm rev−1 and 300 rpm.

3.3. The impact of the ball diameter on the
surface roughness and hardness

When the graphics given in Fig. 4a are examined,
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Fig. 3. Effects of the revolutions per minute and feed rate
on surface roughness (a) and surface hardness (b).

it is observed that depending on the number of rev-
olutions, the increase in the ball diameter (mm) of
the burnishing apparatus has a positive impact on
the surface roughness. As the ball diameter increases,
the surface roughness value was improved. Accord-
ing to Fig. 4a, it can be said that the increase in
the number of revolutions causes distortions on the
surface. SRMIN, SRMAX, SRAVE, and TSRV in the re-
gional transitions are given in Fig. 4a. The best surface
roughness value was measured as an average SRAVE =
0.58 µm at 16.669mm ball diameter, 300 rpm.
When the graphics in Fig. 4b are examined, in gen-

eral, the surface hardness changes in direct proportion
to the ball diameter and number of revolutions. The
best hardness value was attained in the parameters
in which the ball diameter is at the maximum level,
and a number of revolutions is at the minimum level.
SHMIN, SHMAX, SHAVE, and total surface hardness
variation TSHV values attained in the regional transi-
tions are given in the graphics. The best surface hard-
ness value was measured as average SRAVE = 28.5 HB
at 16.669mm ball diameter and 100 rpm.

Fig. 4. Effects of the revolutions per minute and ball di-
ameter on surface roughness (a) and surface hardness (b).

4. Tensile tests

For the tensile test, firstly, the tension samples fol-
lowing the standards were prepared out of the 5083
Al-Mg material tested. The ELISTA universal broach-
ing machine was used for this process. Some samples
which were subjected to the tension process are given
in Fig. 5b as an example. A measurement with three
repetitions was carried out for the tension experiment
out of each experimental sample, and the average of
the measured values was taken.
The increase in the feed rate negatively affects the

strength when the same parameters are used. The
strength of the workpiece is adversely affected by in-
creasing feed which causes reduced crushing on the
surface of the workpiece. Examining the correlation
between the compressive force and the strength, on
the other hand, an increase in the former contributes
positively to the latter values (Fig. 6a).
The increase in the ball diameter positively affects

the strength. When this result is examined, it can be
said that the sinking rate of the ball is more in the
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Fig. 5. Example samples having been subjected to the ten-
sile process.

ball with a small diameter under the same parame-
ters, and this reflects on the surface roughness nega-
tively. The surface roughness occurs on the surface of
the part as grooves and ridges which are not visible
to the naked eye. The more the surface of the part is

crashed, the less these grooves and ridges shall occur.
This is achieved with the diameter of the ball having
the largest surface area. This situation was reflected
on the attained graphics, and better tensile strength
results were attained in the burnished parts whose ball
diameter is greater when compared to the others. The
tensile strength increases as the number of revolutions
increases. The component strength increases with in-
creasing number of revolutions which enhances the ex-
tent of crashing on the workpiece surface (Fig. 6b).

5. Microhardness

The prismatic parts taken from the samples were
used to be able to detect how much and at what ratios
the part that was subjected to the burnishing process
had increased the hardness towards the inside from
the surface.
The microhardness measurements were carried out

in 0.5 mm increments starting from 0.1 mm below the
burnished surface (Fig. 7). The effects of the experi-
mental parameters (feed rate, number of revolutions,
ball diameter and burnishing force) used in burnishing

Fig. 6. The impact of the parameters having been used in the experiments on the tensile strength: (a) effects of burnishing
force and feed rate on tensile strength and (b) effects of ball diameter and a number of revolutions on tensile strength.
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Fig. 7. Taking the experimental sample part for the micro-
hardness measurement.

operation on microhardness were investigated.
The SHIMADZU branded microhardness tester

was used for the measurement of the microhardness.
Examining the microhardness results in Fig. 8, it can
generally be observed that the microhardness values of
the aluminum part decreased towards the part depth,
considering that the average surface microhardness
before burnishing was 90 HV (Fig. 8).
When Fig. 8a is examined, it can be seen that the

increase in the burnishing force positively affects the
microhardness. It is already expected that the bur-
nishing process on the part surface reduces the mi-
crohardness from certain depth onwards. Neverthe-
less, even in the test sample with aminimum burnish-
ing force (100 N), the microhardness result was better
than the raw material at all measured depths.
It is observed that the microhardness is negatively

affected as the feed rate increases (Fig. 8b). As the feed
rate decreases, burnishing time on the surface of the
workpiece increases, and consequently, the resulting
microhardness in the workpiece is more pronounced.
As can be understood from the fact that the last mea-
sured value was 92 HV in Fig. 8b, it can be said that
the burnishing process affected the microhardness to-
wards the inside of the part up to 2–2.5mm. It has
been seen that the increase in the ball diameter nega-
tively affects the microhardness. If the microhardness
and the impact on the inside of the part were requested
as high, it was revealed that the ball diameter should
be kept small. This can be explained by the fact that
the balls with smaller diameter better penetrate the
part, thus affecting microhardness positively.
It is also seen in the attained results that the in-

crease in the number of revolutions is positively re-
flected on the microhardness (Fig. 8c,d).

6. Artificial Neural Network (ANN) model

A neuron is the basic element of neural networks,
and depending on its duties its shape and size may
vary. Analyzing a neuron regarding its activities is
important, since understanding the way it works also
helps us to construct the ANNs. An ANN may be seen

as a black box which contains hierarchical sets of neu-
rons (e.g., processing elements) producing outputs for
certain inputs [42–46].
Each processing element consists of data collection,

processing the data and sending the results to the rel-
evant consequent element. The whole process may be
viewed regarding the inputs, weights, the summation
function, and the activation function (Fig. 9).
According to Fig. 9, we have the following:
– The inputs are the activity of collecting data from

the relevant sources.
– The weights control the effects of the inputs on

the neuron. In other words, an ANN saves its informa-
tion over its links, and each link has a weight. These
weights are constantly varied while trying to optimize
the relationship between the inputs and outputs.
– Summation function is to calculate the net input

readings from the processing elements.
– Transfer (activation) function determines the

output of the neuron by accepting the net input pro-
vided by the summation function. There are several
transfer functions like summation function. Depend-
ing on the nature of the problem, the determination
of transfer and summation function is made. A trans-
fer function generally consists of algebraic equations
of linear or nonlinear form. The use of a nonlinear
transfer function makes a network capable of storing
nonlinear relationships between the input and the out-
put. A commonly used function is a sigmoid function
because it is self-limiting and has a simple derivative.
An advantage of this function is that the output can-
not grow infinitely large or small.
– Outputs accept the results of the transfer func-

tion and present them either to the relevant processing
element or to the outside of the network.
The functioning of ANNs depends on their physi-

cal structure. An ANN may be regarded as a directed
graph containing a summation function, a transfer
function, its structure, and the learning rule used in it.
The processing elements have links in between them
forming a layer of networks. A neural network usually
consists of an input layer, some hidden layers, and an
output layer [42–46].
Firstly, multiple regression analysis was performed.

According to analysis, R2 = 0.52356451 and adjusted
R2 = 0.48891465 values were calculated using Statis-
tica software. These R2 values have not any meaning
statistically. Secondly, ANOVA analysis was also per-
formed. It has been observed that respectively the bur-
nishing force, feed rate, ball diameter, and a number of
revolutions have an impact on the surface roughness
and hardness. Both multiple regression analysis and
ANOVA analysis results did not acquire more progress
for predicting surface roughness and surface hardness.
Because of this, an ANN model was developed.
In this study, the training and test data were pre-

pared using experimental patterns. Data were ob-
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Fig. 8. The impact of the experimental parameters on the microhardness.
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Fig. 9. Basic ANN model.

tained according to study parameters that had 60
rows × 6 columns. About 30% data were used as test
data, 70 % data were used as training data. Burnish-
ing force (N), feed rate (mmmin−1), number of rev-

olutions (rpm), and ball diameter (mm) were used as
input layer, LM algorithm and MLP (Multi-Layer Per-
ception) were used in the ANN model, surface rough-
ness (µm) and surface hardness (HB) were used as
output layer of the ANNs. In the ANN model, tansig,
logsig, and purelin transfer functions (f) were used
and expressed as follows (Eqs. (1)–(4)):

NETi =
∑

wijxj + wbi, (1)

a = tan sig(n) =
1

(1 + e−2n)
− 1, (2)

a = log sig(n) =
1

(1 + e−n)
, (3)

a = purelin(n), (4)

where NET is the weighted sum of the input. Input
and output values were normalized between 0 and 1.
In our case, a supervised learning approach was used
in the model. Since the number of neurons found in
the input and output layers is known, the best per-
formance of the network with the number of hidden
layers is determined using the trial-error method. Usu-
ally, an algorithm is used for the learning process; this
algorithm determines the weights. There are various
learning methods using these strategies – RBF, SCG,
RBFT, etc. (Table 4). The back propagation learning
algorithm has been used with Multi-Layer Perception
(MLP) and Levenberg-Marquardt (LM) learning algo-
rithm versions at the training and testing stages of the
networks. The computer program has been developed
under MATLAB.
In the first step of the training, a determination of

the learning algorithms was made. The number of hid-
den layers and the number of neurons for each hidden
layer were determined. Then, the number of iterations
was entered by the user, and the training started. The
training continues either to the end of the iterations or
reaching the target level of errors. Figures 10 and 11
illustrate the ANN predictions against the empirical
results. Figures 12 and 13 illustrate the best perfor-
mance of ANN and regression results of the training.

6.1. Testing the accuracy of Regression
Analysis (REGA) and ANN-based analysis

To understand whether a multiple REGA or an
ANN is making good predictions, the test data was
checked with unused data. The statistical methods
of RMSE, R2, and MEP values were used for mak-
ing comparisons. Same data obtained from REGA are
used to determine the mentioned values.
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Fig. 10. The ANN predictions against the empirical-based results.

Fig. 11. The ANN predictions against the empirical-based results.

These values are determined by the following Eqs.
(5)–(7):

RMSE =

⎛

⎝(1/p)
∑

j

|tj − oj |2
⎞

⎠
1/2

, (5)

R2 = 1−

⎛

⎜⎜⎜⎝

∑

j

(tj − oj)

∑

j

(oj)
2

2⎞

⎟⎟⎟⎠ , (6)
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Fig. 12. Best performance of the ANN model.

Fig. 13. Regression results of the ANN model.

MEP =

∑

j

(
tj − oj

tj
× 100

)

p
, (7)

where t is the target value, o the output, and p the
number of samples.
Using the trial-error method, the structure of the

network (i.e., the number of neurons and hidden lay-
ers) was changed, and the training operation was re-
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Table 3. Statistical errors for the outputs using various algorithms

Net name Training Test Training Test Training Hidden Output
(hidden layers) performance performance error error algorithm activation activation

1 MLP 4-6-2 0.886279 0.648977 0.011938 0.019339 BFGS 68 Tanh Exponential
2 RBF 4-13-2 0.721798 0.640185 0.024905 0.023927 RBFT Gaussian Identity
3 RBF 4-14-2 0.801942 0.650008 0.019026 0.019221 RBFT Gaussian Identity
4 MLP 4-5-2 0.727790 0.605069 0.024599 0.030921 BFGS 62 Tanh Tanh
5 RBF 4-16-2 0.736733 0.658528 0.023879 0.019539 RBFT Gaussian Identity
6 RBF 4-17-2 0.815479 0.674258 0.018108 0.016974 RBFT Gaussian Identity
7 RBF 4-19-2 0.840660 0.709847 0.015854 0.016212 RBFT Gaussian Identity
8 MLP 4-9-2 0.860230 0.689380 0.014231 0.026251 BFGS 47 Tanh Exponential
9 RBF 4-14-2 0.710074 0.657801 0.026090 0.023534 RBFT Gaussian Identity
10 RBF 4-17-2 0.576614 0.669969 0.037016 0.020735 RBFT Gaussian Identity
11 RBF 4-26-2 0.405562 0.698839 0.066769 0.020288 RBFT Gaussian Identity
12 RBF 4-14-2 0.755550 0.643505 0.023142 0.021047 RBFT Gaussian Identity
13 MLP 4-4-2 0.847854 0.647499 0.015638 0.024218 BFGS 75 Tanh Identity
14 RBF 4-22-2 0.806581 0.650498 0.018587 0.023813 RBFT Gaussian Identity
15 RBF 4-20-2 0.766031 0.607861 0.022248 0.027228 RBFT Gaussian Identity
16 RBF 4-27-2 0.876840 0.720086 0.012569 0.017491 RBFT Gaussian Identity
17 RBF 4-39-2 0.949091 0.733024 0.005481 0.015862 RBFT Gaussian Identity
18 MLP 6-6-13-2 1 0.99982 0.014231 0.026251 LM Tanh Exponential

Table 4. Training, test, and validation regression results of ANN model

Training Test Validation

(R2) (RMSE) (MEP%) (R2) (RMSE) (MEP %) (R2)

Surface roughness, SR 1 3.94E–08 1.31E–08 0.99981 3.11E–08 –8.3E–09 0.99982
Surface hardness, SH 1 2.81E–07 1.5E–09 0.99981 4.1E–07 3.51E–10 0.99982

peated. To be able to get accurate results, three hidden
layers were used. The number of neurons was iterated
from 5 to 150 for each hidden layer. These loops were
continued to obtain the best performance of the net-
works. The best performance of the network depends
on the statistical errors (Table 3). Table 3 illustrates
the behavior of the network with a varying number of
neurons. Table 4 shows the training, test, and valida-
tion regression results for our improved ANN model.
Tables 5a and 5b show inputs/outputs for a test of the
ANN model and accuracy of the ANN model for test
parameters.

6.2. Interpreting the ANN results

The paper was interested in both experimental
work and modeling with ANN methods. The exper-
imental study results can be predicted for the ball
burnishing processes using ANN techniques. As pre-
sented in Table 4 the statistical error levels for both
training and testing data sets are evaluated. As the
table illustrates, the network with three hidden layers
of 4 + 6 + 6 + 13 + 2 neurons at each layer provided
the best results (Fig. 14).
Following the ANN model as illustrated in Fig. 6

set up using 4 neurons for the input layer and with
6 + 6 + 13 processing elements at three hidden layers
and finally, 2 neurons were used at the output layer.
Representation of knowledge was accomplished by the
weights in between the layers.
Regarding the statistical error analysis methods,

using Levenberg-Marquardt (LM) learning algorithm
technique for surface roughness and surface hardness
the mean error value for the training data set are
% 1.31E–08 and % –1.5E–09, respectively.

7. Conclusions

In this study, the impacts that occurred through
the parameters used while conducting the burnishing
process on the surface were examined. It was observed
that the increase in the burnishing force reflects on the
surface hardness positively in the burnishing process
that was applied in the experimental samples. The
surface hardness increased together with the increas-
ing burnishing force. However, the increase in the bur-
nishing force reflected on the surface roughness nega-
tively.
The increase in the feed rate caused a decrease in
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Ta b l e 5a. Improved ANN model inputs and output results (test)

Burnishing
force (N)

Feed rate
(mm/teeth)

Number of
revolutions
(rpm)

Ball
diameter
(mm)

Average
surface
roughness

ANN
surface
roughness

Average
surface
hardness
(HB)

ANN
Average
surface
hardness
(HB)

400 0.25 200 11.112 1.005 1.005 32.75 32.7500003
300 0.25 200 13.494 1.1 1.1 41 41.0000000
200 0.25 200 15.081 0.28 0.28 26.25 26.2500000
100 0.25 200 16.669 0.155 0.155 23 23.0000000
400 0.25 200 16.669 0.525 0.525 41 40.9999996
200 0.25 300 13.494 0.58 0.58 26 25.9999990
400 0.25 100 13.494 1.205 1.205 29.25 29.2500004
100 0.15 200 11.112 0.645 0.645 22.75 22.7500007
300 0.45 200 11.112 1.605 1.605 28.25 28.2500002
200 0.15 300 11.112 0.55 0.55 21.75 21.7500005
400 0.15 300 11.112 1.045 1.045 39 39.0000002
400 0.45 300 11.112 1.945 1.945 29 28.9999988

Ta b l e 5b. Regression results of improved ANN model (test)

Average
surface
roughness

ANN
Average
surface
roughness

RMSE R2 MEP Average
surface
hardness
(HB)

ANN
Average
surface
hardness
(HB)

RMSE R2 MEP

1.005 1.004999994 5.82E–09 1 5.79E–09 32.75 32.75 2.61E–07 1 –8E–09
1.1 1.100000004 4.07E–09 1 –3.7E–09 41 41 6E–09 1 –1.5E–10
0.28 0.279999997 3.21E–09 1 1.15E–08 26.25 26.25 2.03E–08 1 7.74E–10
0.155 0.155000008 7.8E–09 1 –5E–08 23 23 4.39E–09 1 –1.9E–10
0.525 0.524999969 3.07E–08 1 5.85E–08 41 41 4.14E–07 1 1.01E–08
0.58 0.580000145 1.45E–07 1 –2.5E–07 26 26 9.74E–07 1 3.74E–08
1.205 1.204999986 1.35E–08 1 1.12E–08 29.25 29.25 4.31E–07 1 –1.5E–08
0.645 0.644999945 5.55E–08 1 8.6E–08 22.75 22.75 6.73E–07 1 –3E–08
1.605 1.604999986 1.45E–08 1 9.03E–09 28.25 28.25 1.99E–07 1 –7E–09
0.55 0.549999974 2.62E–08 1 4.76E–08 21.75 21.75 4.59E–07 1 –2.1E–08
1.045 1.044999993 6.57E–09 1 6.28E–09 39 39 2.39E–07 1 –6.1E–09
1.945 1.94500006 5.98E–08 1 –3.1E–08 29 29 1.24E–06 1 4.28E–08

Fig. 14. ANN architecture with 4 + 6 + 6 + 13 + 2 processing elements at three hidden layers.
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the surface hardness. According to the attained re-
sults of the experiment, it has been detected that the
best feed rate is 0.25 for the surface hardness. The
feed rate to be 0.25 and 0.35mm rpm−1 in the test
sample has ensured the provision of the best surface
roughness values. All the feed rates after the amount
of 0.35mm rpm−1 have caused distortions in the sur-
face roughness.
When the parameter of the number of revolutions

is taken into consideration, it is seen that the best
surface roughness is attained with 100 rpmmin−1 and
200N burnishing force. The increase in the number of
revolutions causes the distortion of the surface. In the
conducted experiments, it is seen that the changes in
the number of revolutions do not cause too great ef-
fects on the surface hardness. It has also been detected
that as the number of revolutions increases, there is
an increase in the surface hardness although it is little.
The increase in the ball diameter positively affects

the surface roughness. In the experiments, the bur-
nishing process that was conducted via a ball with
a diameter of 16.669mm (the greatest ball diameter
having been used) gave the best surface roughness.
The best surface hardness for the test sample was at-
tained with a ball diameter of 15.081mm. While there
were increases in the surface hardness up to the ball
diameter of 15.081mm, decreases occurred after this
diameter in the surface hardness.
As a result of the conducted tensile tests, it was re-

vealed that the increase in the burnishing force used
in the burnishing process positively affected the ten-
sile strength of the material. The increase in the feed
rate that was among the burnishing parameters neg-
atively reflected on the tensile strength. The results
of the best tensile strength were attained in the least
feed rates. The increase in the number of revolutions
and ball diameter among the burnishing parameters
positively affected the tensile strength.
When the impacts of the parameters applied in the

burnishing process on the microhardness of the test
samples were examined, it was detected that the in-
crease in the burnishing force positively affected the
microhardness of the test sample surface. The best
microhardness values were attained from the great-
est burnishing forces (400 N). As was expected, the
impact areas of the burnishing process as much as 2–
2.5 mm were detected for the test samples in the mea-
surements conducted from the burnishing test sample
surface towards the inside. The increase in the ball
diameter and feed rate negatively affected the micro-
hardness of the test sample part surface. If the mi-
crohardness and the impact on the inside of the test
sample were requested to be high, it was revealed that
the ball diameter should be kept small.
When the attained results are assessed overall, it

could be said that the most significant parameters in
the burnishing process are respectively the burnishing

force and the feed rate. The other parameters used –
the number of revolutions and the ball diameter – are
also efficient on the burnishing, but it was seen from
the conducted experiments and with the attained re-
sults that their impacts were not as great as those of
the burnishing force and feed rate. The best surface
roughness value for the test sample (0.155µm) was at-
tained with the 0.25mm rpm−1 feed rate, 100 N bur-
nishing force, 200 rpmmin−1 number of revolutions
and 16.669mm ball diameter. The best surface hard-
ness value for the test sample (41 HB) was attained
with the 0.25mm rpm−1 feed rate, 300 N burnishing
force, 200 rpmmin−1 number of revolutions and a
13.494mm ball diameter.
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Göloğlu, C., Yaşar, M. Karabuk, Iron and Steel Insti-
tute 2015, p. 768.

[24] El-Tayeb, N. S. M., Low, K. O., Brevern, P. V.: Jour-
nal of Materials Processing Technology, 186, 2007, p.
272. doi:10.1016/j.jmatprotec.2006.12.044

[25] Thamizhmanii, S., Saparudin, B., Hasan, S.: Journal
of Achievements in Materials and Manufacturing En-
gineering, 22, 2007, p. 95.

[26] Rao, J. N. M., Reddy, A. C. K., Rao, P. V. R.: Indian
Journal of Science and Technology, 3, 2010, p. 737.
doi:10.17485/ijst/2010/v3i7/29805

[27] Shiou, F. J., Chen, C. H.: Journal of Materials Pro-
cessing Technology, 140, 2003, p. 248.
doi:10.1016/S0924-0136(03)00750-7

[28] de Lacalle, L. N. L., Lamikiz, A., Muñoa, J., Sánchez,
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