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Abstract

In this study, a traditional optimization technique Fuzzy Logic and a deterministic opti-
mization technique filled function method are employed in the modeling of surface hardening
problems in physics.
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1. Introduction

Austenitic stainless steels are used in various ar-
eas of real life, such as nuclear reactors, biomedi-
cal implants, components for chemical industries [1,
2]. Because they have poor wear resistance, yield
strength, fracture, and impact toughness, there exist
lots of studies related to the improvement of mechani-
cal properties of these materials [3, 4]. One way is the
usage of the surface coatings on these materials [5].
The use of surface coatings gives an opportunity to
design a material in which the most needed properties
are located. Boronizing is a thermochemical surface
hardening process, and it has been used to improve
the surface properties of valves, burner nozzles in the
utility industry [6].
On the other hand, determining to what extent the

amounts of elements in alloy affect the microhardness
is one of the important questions. It has been shown
in [7] that in the boronizing process different steels
give different reactions and this difference arises from
the amount of alloying elements. Although determin-
ing the microhardness of the alloy depending on the
amounts of elements in the alloy is important in mate-
rial design, there are hardly any works on this subject.
In [7], the thermochemical surface treatments and

also tensile properties of four steels were discussed.
Also, the influence of V-notch on the impact proper-
ties of four different borided and unborided steels were
obtained (AISI 316(0.04wt.%C), 1040(0.35wt.%C),
4140(0.39wt.% C), 1045(0.40wt.% C)).
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We consider the above four materials all having
different amounts of carbon, silicon, manganese, and
nickel. Carbon is the main element in boronizing.
First, we enrich the data by using fuzzy numbers and
then employ filled function method for searching max-
imum microhardness of the alloy concerning some of
its ingredients. For example, in our work, these ingre-
dients are carbon and silicon.
The aim here is to look for the best amounts of

the elements that make the microhardness of the alloy
maximum.
Fuzzy logic starts with the concept of a fuzzy set,

and fuzzy sets were first introduced by Zadeh (1965)
[8]. It was not applied to control systems until the
70’s due to insufficient small-computer capability be-
fore that time. Following the introduction of the the-
ory, Zadeh began to develop modeling techniques on
studies [9–11]. Zadeh noted in his paper [12] that the
fuzzy logic method could have been applied effectively
for the formulation and approximate solution of ap-
plicable problems, particularly in such fields as eco-
nomics, management science, medicine, and biology.
Then it was applied by Mamdani to control the dy-
namic systems in the mid-1970’s. At the same study,
he developed a method for controlling plants that are
difficult to model [13]. After this, fuzzy logic has been
widely used in many control applications, especially
for nonlinear systems.
Two well-known fuzzy inference systems are Mam-

dani and Tagaki-Sugeno fuzzy methods [13, 14]. Mam-
dani method has some advantages; it is intuitive, has
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widespread acceptance and is well suited to human
cognition [15–18]. The paper [19] suggested a method
of multi-dimensional fuzzy reasoning concerned with
both modus ponens and modus tollens. It also dis-
cusses an example to show how the method works. In
1985, Tagaki and Sugeno presented a mathematical
tool to build a fuzzy model of a system where fuzzy
implications and reasoning are used. It has a quite
simple form, but it may represent highly nonlinear re-
lations as has been shown in the examples in [20].

2. Material and methods

In this study, the data used for modeling is from
the study by Calik et al. [7]. The detailed information
about how to obtain the data can be found in this ar-
ticle. It should be mentioned that, in the construction
of fuzzy logic modeling, we have just considered the
experimental data which is obtained from board zone
(the surface), and transition zone. Because the effect
of boronizing is very low in matrix zone, we have not
taken into account the data obtained from that zone.
In the present paper, fuzzy logic modeling is em-

ployed to extend the data. Moreover, we use filled
function method (FFM) to find the global maximizer
of the above physical problem which has a very im-
portant role in material design.

3. Fuzzy Logic Approach and application

3.1. Fuzzy Logic Approach

A fuzzy set A is defined by

A = {(x, μA (x)) : x ∈ X,μA (x) ∈ [0, 1]} , (1)

where X is the universal set, A is a fuzzy subset in
X,μA (x) is the membership function of A. A fuzzy
set A on R (Real numbers) is characterized by its
membership function μA : R → [0, 1] having prop-
erties μA (x) = 1, x ∈ A, μA (x) = 0, x /∈ A and
0 < μA (x) < 1, x ∈ partially to A.
Definition 1: A fuzzy set A on R is called normal

if there is at least one point x ∈ R with μA (x) = 1.
Definition 2: A fuzzy set A on R is convex if

for any x, y ∈ R and any λ ∈ [0, 1], we have
μA (λx + (1− λ) y) ≥ min {μA (x) , μA (y)} .
In our application the universal set X = R and

fuzzy sets are normal, convex, upper semi continuous
and have the property that suppA = {x : μA (x) > 0}
is compact.
The main idea of the fuzzy set theory is: instead

of determining the exact boundaries as in an ordinary
set, a fuzzy set allows no sharply defined boundaries
because of generalization of a characteristic function

Fig. 1. The basic elements of Fuzzy Logic System.

to a membership function [21]. Figure 1 describes the
basic elements of the fuzzy logic system which are
rules, fuzzifier, inference engine, and defuzzifier. For
any set, the degree of membership functions changes
from 0 to 1. In fuzzy logic system, there are differ-
ent types of membership functions: triangular, trape-
zoidal, Z-shaped, Gaussian, sigmoidal, S-shaped. Tri-
angular and trapezoidal membership functions were
selected for this paper. The triangular membership
function is a function of a vector x, and depends on
three scalar parameters a, b, and c given by

μ (x; a, b, c) = max

(
min

(
x− a

b− a
,
c− x

c− b

)
, 0

)
. (2)

The trapezoidal curve is a function of a vector x and
depends on four scalar parameters a, b, c, and d as
given by

μ (x; a, b, c) = max

(
min

(
x− a

b− a
, 1,

d− x

d− c

)
, 0

)
. (3)

The parameters a and d locate the “feet” of the trape-
zoid and the parameters b and c locate the “shoul-
ders”.
Then the linguistic rules, if then, are determined

which are commands of the system behavior. After
implementing these engines, the obtained results are
fuzzy numbers. So they must be defuzzified. In the de-
fuzzification stage, there are different types of meth-
ods: centroid, bisector, middle of maximum, smallest
of maximum, and largest of maximum. We used cen-
troid technique which has the formula

real output =
∫ μA (x) xdx
∫ μA (x) dx , (4)

where ∫ μA (x) dx �= 0 for all μA.
Because collecting the data is very costly and time

consuming we use the fuzzy logic model to enrich the
data.

3.2 Application of Fuzzy Logic

The use of fuzzy logic approach provides a basic
way for the estimation of layer microhardness. Firstly,
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Fig. 2. (a) The membership functions of distance, (b) the membership functions of amounts of carbon, (c) the membership
functions of amounts of silicon, and (d) the membership functions of amounts of manganese.

fuzzy logic modeling was used to build a Mamdani
model for the estimation of layer microhardness values
based on the boriding process at different amounts of
carbon, silicon, manganese, and distance of boronized
layer to the surface.
The amounts of carbon, silicon, manganese, a dis-

tance of boronized layer to the surface and microhard-
ness values are selected as input and output variables,
respectively. The fuzzy subsets defined for the distance
of boronized layer to the surface, the amounts of car-
bon, silicon, and manganese are shown in Figs. 2a–d.
The distance of boronized layer to the surface, the

amounts of carbon, silicon, and manganese may be
defined in a scale that consist of the range 0–200µm,
0–0.5 wt.%, 0.15–4.5 wt.%, and 0.7–1.4 wt.%, respec-
tively. Three fuzzy subsets, namely low, medium, and
high were considered for the distance, and four fuzzy
subsets, namely low, medium, high, and very high
were considered for the amounts of the alloying el-
ements carbon, silicon, and manganese. Five fuzzy
subsets for the microhardness are also labeled as low,
medium, high, very high, very very high (see Fig. 3).
The rule structure is designed based on how the

experts interpret the characteristics of the variables
of the system. In collaboration with the experts con-
ducting the experiment, fuzzy rules of our model are
obtained after considering the relationships between
the input and output variables. We adjust the fuzzy
partition on the computer until the best fit is obtained
after the fuzzy rule base inference machine is set up.
Some of the rules obtained as mentioned above are as
follows:
If (Distance is L) and (Amount of carbon is L) and

(Amount of silicon is VH) and (Amount of manganese

Fig. 3. The membership functions of microhardness.

is VH) then (Microhardness is VH).
If (Distance is M) and (Amount of carbon is M)

and (Amount of silicon is L) and (Amount of man-
ganese is H) then (Microhardness is H).
If (Distance is H) and (Amount of carbon is L) and

(Amount of silicon is VH) and (Amount of manganese
is VH) then (Microhardness is L).
Then a model is established which estimates the

microhardness of boride layer for untested conditions
by using Mamdani method. The general structure of
the model is shown in the following.
In Fig. 5, the final results in the form of defuzzified

microhardness values estimations versus the measured
values are presented.

4. Filled Function Method

The Filled Function Method (FFM) which is one of
the global optimization techniques was first proposed
by Ge [22–25]. The first proposed two-parameter filled
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Fig. 4. Fuzzy Logic Model structure of our problem.

Fig. 5. Fuzzy values versus measured values.

function for smooth optimization is the following:

P (x, x∗
1, r, ρ) =

1
r + f(x)

exp

(
‖x− x∗

1‖2
ρ2

)
. (5)

Since it contains an exponential term, this filled
function cannot be useful for every problem. Since
the exponential term increases rapidly, changes in
P (x, x∗

1, r, ρ) and∇P (x, x∗
1, r, ρ) become indistinguish-

able [22]. To avoid these drawbacks, some new filled
functions were proposed in [26]. In literature, it is pos-
sible to see different studies which are trying to elimi-
nate these drawbacks and disadvantages [27, 28]. The
main idea of FFM is to leave current local minimizer
x∗
1 to a lowerminimizer x

∗
2 of the objective function

with the aid of the filled function which is constructed
by modifying the objective function at the point x∗

1. If
a local minimizer x̄ of the filled function can be found,
which lies in a basin of objective function lower than

the basin of the first local minimizer, one then can
find a lowerminimizer x∗

2 of the objective function
byminimizing the objective function with initial point
x̄. Just replacing x∗

1 by x∗
2, a new filled function can

be constructed and then a much lowerminimizer of
the objective function can be found by using the same
way. This loop continues until the globalminimizer of
the objective function is found [29–33].
Although, the first filled functions have some disad-

vantages and very specifically, after the development
of the filled functions, the FFM has become more pop-
ular in the global optimization techniques because of
its relatively easy actualization with a process simi-
lar to the sequential unconstrainedminimization tech-
nique. Some definitions and details on FFM are given
in the following section.
The FFM is interested in determining the global

minimizer of a function f on Rn under the following
assumptions:
– f is continuously differentiable,
– f has only a finite number of minimizers,
– f(x)→ ∞ as ‖x‖ → ∞.
Notice that assumption (ii) only requires that the

number of local minimal values of f is finite. The num-
ber of local minimizers can be infinite. Now, let us
give the basic definitions related to the filled function
method.

Definition 3: The basin B∗
k at a local minimizer x

∗
k

of f(x) is a connected domain which contains x∗
k and

in which starting from any point steepest descent tra-
jectory converges to x∗

k, but outside which the steepest
descent trajectory does not converge to x∗

k.

Definition 4: A hill of f(x) at x∗
k is the basin of

−f(x) at its minimizer x∗
k if x

∗
kis a maximizer of f(x).

Definition 5: A local minimizer x∗
k+1 of f(x) is

said to be lower (higher) than x∗
k if f

(
x∗
k+1

)
<
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f (x∗
k)

(
f
(
x∗
k+1

)
> f (x∗

k)
)
and in this case the basin

B∗
k+1 of f(x) at x

∗
k+1 is said to be lower (higher) than

B∗
k.
Definition 6: p(x) is called a filled function of f(x)

at a local minimizer x∗
k if p has the following proper-

ties:
(i) x∗

k is a local maximizer of p(x),
(ii) p(x) has neither minimizer nor saddle point in

W ∗
k − {x∗

k} and set W ∗
k becomes a part of p(x) at x

∗
k,

whereW ∗
k = B∗

k ∪U∗
k and U

∗
k is the union of all basins

higher than B∗
k,

(iii) If f(x) has a basin B∗
k+1 lower than B∗

k, then
there exists a point x′′ ∈ B∗

k+1 that minimizes p(x)
along the ray x∗

k + λ (x′′ − x∗
k) , λ > 0 for each x′′ ∈

B∗
k+1.
The above properties of a filled function ensure

that when any of descent methods, for example steep-
est descent method, the Newton method, the conju-
gate gradient method, etc., is employed to minimize
the filled function, the sequence of iteration will not
terminate at any point in W ∗

k and when there exist
basins of filled function lower than B∗

k, the sequence
will either terminate at a point in a basin lower than
B∗

k or generate a point xs such that the value of f(xs)
is less than f(x∗

1).
Using the fuzzy logic, we modeled the relation be-

tween inputs and output. In fact, the fuzzy logic ap-
proach sets the continuous function between input
variables and output. If we would like to know the
best values of inputs that give the maximum value
of the output, unfortunately, the fuzzy logic approach
does not give us the rule of the objective function so
that we can find the global maximum. Therefore, some
global optimization methods which need the rule of
the objective (model) function cannot be applied. So,
to obtain the rule and the graph of the function, we
employed one of the surface fitting techniques. But for
the sake of clarity, we used two inputs and one out-
put, for example, in this work Amounts of carbon and
Amounts of silicon are selected as inputs, and the mi-
crohardness is selected as the output. The rule and the
graph of the model (objective function) are obtained
as follows:

z = f(x1, x2) =
1
2
(4432x21 − 1316x1 −

− 253.1 cos(30.38x2)− 227.5 sin(30.38x2) + 3577).(6)

The graph of a function f is presented in Fig. 6.

5. Algorithm and application of FFM

Insofar we have enriched data by applying fuzzy
logic and constructed the objective function by using
the enriched data. Herein, to find the global maximum
of the objective function we give the FFM algorithm

Fig. 6. The graph of the model function.

for the filled functions

Q(x, x1, a) := − (f(x)− f(x1)) exp(−a ‖x− x1‖2) (7)

and

S(x, x1, a) := −‖x− x1‖+μmax {0, f(x)− f(x1)}+
+ η (min {0, f(x)− f(x1)}) , (8)

where η is mitigator, for example η(t) = arctan t,
η(t) = ln (1 + t), proposed in [26] and [31], respec-
tively. Notice that the function S(x, x1, a) is not dif-
ferentiable and we need strong subgradient methods
to minimize it.
Step 1. Choose a constant ε > 0. Describe lower

and upper bound for a boundaryD in which the global
optimum of f(x) is to be found. Start from any x0
point which is within the lower and upper bounds.
Minimize f(x) by using a local algorithm to find a
local minimizer x1.
Step 2. Construct the filled function Q (or S) by

using x1 and parameter a. Minimize the filled function
with x0 as a starting point to obtain a local minimizer
denoted xs.
Step 3.
– If such a point xs is found that it is minimizer of

the function Q (or S), then go to Step 4.
– If the iteration sequence reaches the boundary

of D, then stop and the current x1 is adopted as the
global minimizer.
Step 4. With xs as the starting point, minimize

f(x) to find another local minimizer x2(�= x1) (if ex-
ists).
– If f(x2) < f(x1), update x1 as x2, then go to

Step 2.
– If f(x2) > f(x1), leave x1 unchanged but update

a (replaced by a+ 4), then go to Step 2.
After implementing the above algorithm, we ob-

tain the following results concerning Q and S filled
functions:
– If we use the filled function Q, then x∗ =

(0.5, 0.334)
– If we use the filled function S, then x∗ =

(0.5, 0.333).
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We note that results are very close to each other
satisfactorily. This shows our methodology starting
with Fuzzy Logic to make the data continuous and
modeling this data by a smooth function and ending
with applying FFM to obtain the globalminimizer of
model function is very effective and fruitful.

6. Conclusions and future works

We applied fuzzy logic to estimate the microhard-
ness of boronized steels which depends on the alloying
elements. It can be used to predict the microhard-
ness for inexperienced conditions. The regression anal-
ysis R2 shows that experimental results and Mamdani
method results are close to each other at the rate of
97.75% (see Fig. 5). The objective function which rep-
resents the model is obtained after getting useful in-
formation from enriched data. It is possible to con-
sider different elements in modeling. In this work, we
try to model the effect of the amount of alloying ele-
ments which are amount of carbon (C) and silicon (Si)
on microhardness. Finally, local and global extremum
values of the objective function are obtained by apply-
ing filled function method which is one of the effective
global optimization techniques, that has recently been
started to be applied to these kinds of physical prob-
lems (see [29–31]).
In future works, several investigations are de-

scribed as follows: The same method can also be ap-
plied to some mechanical properties of alloys such
as fracture toughness, residual stresses etc.; differ-
ent binary alloying elements can be chosen and same
method can be applied; a new filled function can be
offered and the application area in engineering and
physics can be extended.
Finally, it should also be noted that this new

methodology can solve much more complicated phys-
ical and engineering problems whose model functions
may have infinitely many local minimizers with sat-
isfactory results. That is what we aim in our future
studies.
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