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Abstract

The present paper describes Monte Carlo simulation models aimed for the investigation
of various phenomena of grain growth in polycrystalline materials. It covers models including
oriented and anisotropic grain growth as well as the development of structures containing the
liquid and gaseous phase. Several new Monte Carlo simulation models have been proposed in
the paper.
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1. Introduction

Sintering of powders is one of the most important
processes for the development of polycrystalline ma-
terials. The microstructure of a material is of funda-
mental importance in the processing of ceramics and
metals since it affects the physical properties of the
final product. Progress in our ability to satisfactor-
ily predict microstructure and its properties has been
quite slow owing to complexity of physical processes
involved. The complete prediction of microstructural
development in polycrystalline solids as a function of
time and temperature is a major objective in materials
science.
Grain size is a very important characteristic for

evaluating properties of the materials, especially when
we need to balance different ones [1]. During the sin-
tering of polycrystalline materials the normal grain
growth obeys the basic law

R = k · tn, (1)

where R is an average grain size, k is a constant with
Arrhenius temperature dependence, t is sintering time
and n is a kinetic grain growth exponent. However
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the grain growth is influenced by many other input
parameters.
Recently, computer simulation techniques have

been developed, which can successfully incorporate
many aspects of the grain interactions and can predict
the main features of the microstructure [2–10]. The
aim of simulation of polycrystalline grain growth is to
approximate to the highest degree to the real struc-
tures. Relations between Monte Carlo simulations and
real structures have been studied in [11]. A procedure
for the simulation and reconstruction of real structures
in crystalline solids has been presented in [12]. Exper-
imental and computational studies of grain growth for
other various types of materials have been carried out,
e.g. in [13, 14].
The most realistic correspondence between the

evolution of real and simulated structure was achieved
by Monte Carlo simulations. Monte Carlo simulation
is a stochastic Markov process that generates a se-
quence of configurations of lattice site states. Trial
states are generated from a random distribution and
are either accepted or rejected with a probability given
by the Boltzmann factor.
The generalized Q-state Potts spin model is ap-

plied to the simulation procedure. The structure
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development is mapped onto the two-dimensional
or three-dimensional discrete simulation lattice. An
area element of microstructure is represented by
one lattice site and is assigned a random number
Qi (1 < Qi < Q) called orientation or spin. Grain
boundary lies between two adjacent sites with differ-
ent orientation. The energy of a lattice site is given by
the Hamiltonian

E = J
n∑

j=1

(
1− δQiQj

)
, (2)

where J is a positive constant, Qi is the orientation of
the i-th lattice site, Qj is the orientation of the j-th
neighbouring lattice site, δQiQj is the Kronecker delta.
The sum is given over n vicinal lattice sites.
During the simulation procedure the i-th lattice

site orientation is generated randomly and its energy
E1 is calculated according to (2). Then a new random
orientation is given to the i-th lattice site and energy
E2 after reorientation is again calculated. The reori-
entation is accepted when E2 < E1. Otherwise the
reorientation is accepted with the probability

P ≈ exp {−∆E/kT} , (3)

where

∆E = E2 − E1, (4)

k is the Boltzmann constant and T is the temperat-
ure. The term J/kT can be replaced by α also called
temperature factor and for the final probability of the
reorientation acceptance one obtains

P ≈ exp {−αd} . (5)

If the lattice consists of N ×N lattice sites, N ×N
reorientation attempts represent a time unit called
Monte Carlo step (MCS). In all simulation types de-
scribed in the paper the lattice sites can be arranged
either in square or hexagonal configuration. The type
of the simulation lattice is one of the input paramet-
ers before the simulation starts. The influence of this
parameter on simulated structure and average grain
size was studied in [15].
As mentioned above the initialisation of the simu-

lation lattice can be based on random number orient-
ations. However, instead of random number one can
employ also experimental orientation. Then the input
microstructure can be an experimental one measured
either by EBSD (Electron Back Scattered Diffraction)
[16] to simulate grain growth or by TEM (Transmis-
sion Electron Microscope) to simulate primary recrys-
tallization [17]. Then because the grain orientation is
known the grain boundary nature is also known and

then its energy can be adjusted (see e.g. [18]). The
simulation procedure is universal and the initial simu-
lation lattice can be obtained also from other devices
e.g. from REM (Reflection Electron Microscope) [15].

2. Normal grain growth simulations

2.1. M o n o p h a s e g r a i n g r ow t h

Generally, the simulation algorithm of grain growth
is based on the tendency of lattice points to achieve
minimum energy. This elementary algorithm of mono-
phase structure development was described in detail,
e.g. in [15, 19, 20].

2.2. G r a i n g r ow t h w i t h t h e p r e s e n c e
o f s t a t i c s e c o n d p h a s e

The static second phase does not participate in the
energy interaction. If during the simulation the lat-
tice point with the orientation Qs is randomly chosen
this trial is ignored. The simulation continues with
another trial. Consequently, the positions of the static
second phase lattice sites before and after simulation
procedure are the same [22–31]. The static second
phase lattice points can be arranged either in the form
of grain inclusions, whiskers, fibres. The influence of
the input parameters on the simulated microstruc-
ture development in Monte Carlo simulations for both
monophase materials and materials containing static
second-phase particles has been studied in [32].

2.3. G r a i n g r ow t h i n t w o - p h a s e
m a t e r i a l s

When simulating grain growth in two-phase ma-
terials, two types of grains with two different melting
temperatures should be taken into account [28, 29].
These parameters are represented by two temperature
coefficients α (α = J/kT ), one for each phase. Then
the simulation is carried out analogously to that de-
scribed, e.g. in [15, 19] with different α for each phase.

2.4. G r a i n g r ow t h w i t h t h e p r e s e n c e
o f l i q u i d p h a s e

There are many materials, which are prepared by
the sintering process under the existence of a liquid
phase [30]. In what follows the computer simulation
algorithm of the grain growth in the presence of li-
quid phase is proposed. Required percentage of lattice
points belonging to the solid phase is initialised ran-
domly with the orientations from the interval 〈1, Q〉.
The rest of lattice points belonging to the liquid phase
are initialised with the orientation QL;
– if the chosen lattice point belongs to the solid
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phase the reorientation trial follows the algorithm
given in [15];
– if the chosen lattice point belongs to the liquid

phase with coordinates (i1, j1) so called “mass transfer
algorithm” is applied:
a) using “random walking algorithm without back

step” (algorithm [30]) we find the first point of the
solid phase with coordinates (i2, j2) and orientation
QSol;
b) the energy balance at the liquid phase point

(i1, j1) is calculated – EA1;
c) the energy balance at the solid phase point

(i2, j2) is calculated – EA2;
d) EA = EA1 + EA2;
e) temporarily the solid phase point (i2, j2) is re-

placed by liquid point and energy balance EB2 is cal-
culated;
f) successively for k ∈ 〈1, Q〉 we calculate the en-

ergy balance at the point (i1, j1) and find the smallest
EB1opt(k);
g) EB = EB1opt(k) + EB2;
h) if EB < EA, the exchange is accepted. Otherwise

the old orientations are left unchanged.
For illustration, we introduce the structure devel-

opment in the presence of liquid phase (shaded lattice
points) that was simulated for N = 200, Q = 50, t
= 100 MCS, α = 5, γSL = 50, γSS = 50 with 10 %
(Fig. 1a) and 40 % (Fig. 1b) of liquid phase L, respect-
ively.

2.5. G r a i n g r ow t h i n t h e p r e s e n c e o f
g a s e o u s p h a s e

During the simulation of the structure develop-
ment of the materials with the presence of dynamical
pores, we considered simultaneously the energy bal-
ance point of view of solid particles sites as well as
the direction of the pores motion aspect [31], [33–35].
In other words, along with the simulation of the grain
growth through the use of the above given procedures,
we have to simulate the migration of pores as well. The
algorithm of the pore migration involves:
– determination of the direction of the motion,
– calculation of eventual change of the pore posi-

tion in this direction.

2.5.1. Energy balance calculation during pore
migration

The kinetics of the pores is realized via the ex-
change of the orientation of the lattice point A by the
orientation of some of neighbouring points, e.g. by the
orientation of the point B. Using (2) we calculate the
energy of the pore site A – E1A and the energy of the
site B – E1B. Then

E1 = E1A + E1B; (6)

Fig. 1. Grain growth in the presence of liquid phase simu-
lated on the square simulation lattice with input paramet-
ers N = 200, Q = 50, α = 5, t = 100 MCS, γSL = 50, γSS

= 50, L = 10 % (a) and L = 40 % (b).

– we exchange points A and B;
– again using (2) we calculate the energies of both

exchanged points – E2A, E2B. Then

E2 = E2A + E2B; (7)

– the difference of the energies before and after the
exchange of the points A and B is

∆E = E2 − E1; (8)

– if ∆E ≤ 0, the exchange of the sites A and B is
accepted with the probability equal to 1, otherwise it
is accepted with the probability

P ≈ exp {−β∆E} , (9)

where β is a temperature coefficient of the pore mo-
tion.
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Fig. 2. A part of square simulation lattice with pore lattice
site surrounded by lattice points is denoted 1÷ 8. Double
line denotes the nearest edge of the simulation lattice.

Fig. 3. Distribution of the lattice sites neighbouring with
the pore site A and denoted k − 4 ÷ k + 4 in the lattice
space, where k is the direction to the nearest simulation

lattice edge (double line).

2.5.2. Direction of the pore motion

We have studied four models of the pore migrations
using different approaches determining the direction of
the pore motion. In all the algorithms let us assume
that during the simulation we have randomly chosen
lattice site A with QA = QP.

2.5.2.1. Stochastic model of the pore motion

In this model, the motion of pores is allowed with
equal probability in all directions. The algorithm of
the pore motion simulation is as follows:
– in the first step let us denote the 8 lattice points

neighbouring with the chosen pore site A by numbers
from 1 to 8 according to Fig. 2. Let us assume that the
right side of the simulation array (denoted by double
line) is the nearest edge (from all 4 edges of the array)
to the site A;
– let us generate the random number (uniform

Fig. 4. Distribution of the lattice sites neighbouring with
the pore site A and denoted k− 4÷ k+4 according to the

Gaussian distribution.

distribution) from the interval 〈1, 8〉 determining the
point B and thus the direction of the eventual pore
motion;
– the energy balance calculation is then carried out

between these two points according to the algorithm
presented in the section 2.5.1.

2.5.2.2. Probability model of the pore motion

In this model, the probability of the pore motion is
determined by Gaussian distribution around the direc-
tion to the nearest edge of the simulation lattice. The
algorithm of the pore motion simulation is as follows:
– we determine the nearest edge of the simulation

lattice. The smallest distance to an edge of the lattice
is

c = min (XA, N − XA, YA, N − YA) , (10)

where XA, YA are the coordinates of the point A (see
Fig. 3). The nearest edge is denoted by double line on
the right side of the simulation lattice. We select the
direction satisfying (10) and we denote it k;
– other lattice points neighbouring to the site A

are denoted according to Fig. 3;
– Gaussian random number generator (with σ as

input parameter) generates random number from the
interval 〈k − 4, k + 4〉 according to Fig. 4;
– based on this number and using the notation

from the Fig. 3 we select neighbouring point B;
– the energy balance calculation is then carried out

between these two points according to the algorithm
presented in the section 2.5.1.

2.5.2.3. Motion in directions 〈k − 2, k + 2〉 with equal
probability – edge model

Using (10) we determine the direction k. We shall
suppose that the pore point A can interact only with



E. Morháčová, M. Morháč / Kovove Mater. 46 2008 361–370 365

Fig. 5. Lattice point A surrounded by points denoted k −
2 ÷ k + 2. To define interacting point B we generate a
random number from the interval 〈1, 5〉 that corresponds
to the sites k − 2, k − 1, k, k + 1, k + 2. Then the energy
balance calculation is carried out with this point.

one of the five possible lattice sites denoted in Fig. 5
as k − 2, k − 1, k, k + 1, k + 2. They are symmet-
rically distributed around the basic direction given by
position of the site k.

2.5.3. Results of simulations of pore migration

In Fig. 6a we present final structure after grain
growth simulation along with pore migration accord-
ing to the stochastic model. Due to uniform distri-
bution of the pore motion in all directions, relatively
large clusters of pores were enclosed inside of the ma-
terial. Moreover large amount of small, one point pores
(pores of the first generation), remained in the mater-
ial as well.
In the probability model, it is possible to control

the Gaussian distribution of the pores motion. An ex-
ample of the simulation employing this model for σ= 2
is given in Fig. 6b. Only few clusters of pores remained
encapsulated. They have regular elliptical shape. One
can notice the bent square of solid material in the sim-
ulation lattice.
Finally in Fig. 7a we show the resulting struc-

ture with pores motion simulation according to the
edge model (after 1000 MCS, β = 1000). The ma-
jority of pores left the structure and moved to the
edges of the simulation lattice. Fewer clusters re-
mained encapsulated inside of the solid material than
in the stochastic model. This model like probabil-
ity model allows to simulate shrinking of pores along
with their motion to the edge of the lattice. We can
go on with the simulations and change the temper-
ature coefficient of pore migration to β = 2. The
structures after 1020 MCS, 1040 MCS and after 5000
MCS are shown in Figs. 7b, 7c and 7d, respect-
ively. One can see that the encapsulated pores disap-
peared from the material and the square lattice was
straightened.

Fig. 6. Grain growth with the mobile pores simulated on
the square simulation lattice according to the stochastic
model (a), the probability model (σ = 2) (b) with input
parameters N = 150, Q = 40, α = 1000, β = 1000, P =

20 %, t = 5000 MCS.

One can ask why the bent square of the solid ma-
terial in Fig. 6b is greater than in Fig. 6a and why
it completely disappears in Fig. 7d. The difference
between both models consists in different probabil-
ities of pores motion. Consequently every model has
different speed of the pores motion to the edge of sim-
ulation lattice. The aim was to carry out several sim-
ulations for both models and to find out which model
corresponds to real structures. Actually the sintered
ceramic pellets are in fact bent in a way the proposed
simulation models indicate.
In Figs. 7b,c,d we decreased the temperature coef-

ficient to β = 2. Due to this the pores tend to move to
their closest edges of the simulation lattice. In Figs. 7b
and 7c we present intermediate results after 1020 and
1040 MCS, respectively. When we increase dramatic-
ally the simulation time to 5000 MCS all pores leave
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Fig. 7. Grain growth with the mobile pores simulated on the square simulation lattice according to the edge model with
input parameters N = 100, Q = 60, α = 1000, β = 1000, P = 20 %, t = 1000 MCS (a), β = 2, t = 1020 MCS (b), t =

1040 MCS (c), and t = 5000 MCS (d).

the solid material. However, the simulation process
of monophase grain growth in solid material goes on.
Due to the finite simulation lattice the pores cannot
move in the perpendicular direction towards the edges.
They are forced to move along the edges and as a con-
sequence the square lattice is straightened.

3. Oriented grain growth simulations

3.1. O r i e n t e d g r a i n g r ow t h i n o n e
d i r e c t i o n

During the simulation the excess of energy in pre-
ferred direction, which determines the grain boundary
curvature, can be influenced by changing the value J
in the Hamiltonian (2) in dependence of the neigh-
bouring sites [36–38]. It means that neighbouring sites
contribute with different weights to the Hamiltonian
in (2). Hence the Hamiltonian for oriented structures

can be written as

E = −
∑

J
(
δQiQj − 1

)
, (11)

where

J =
N∑

j=1

Jj . (12)

The value JPr of the lattice points in the preferred
direction equals to the multiple of JNi in the non-
-preferred direction (Ni �= Pr). In practice, the prefer-
ential grain growth is given by the weights

Wi =
JPr
JNi

. (13)

In [15] for the square lattice three various al-
gorithms to specify preferred direction were proposed:
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1. Two-weights square model – the weight of grain
growth in preferred direction isW1 (horizontal or ver-
tical), the weights of other lattice points neighbouring
with the point being evaluated are W2.
2. Two-weights cross model – it allows the evalu-

ated site to interact only with four neighbouring sites
in horizontal and vertical directions – two points in
the preferred direction have the weights W1 and two
points in the other allowed positions have the weights
W2. The neighbours in diagonal directions do not par-
ticipate in the energy interaction, i.e., their weights are
equal to zero.
3. Three-weights elliptical model – in this model we

have proposed three directions – horizontal, vertical
and diagonal. The weightW3 in diagonal directions is
defined by an ellipse with semi-axes W1 and W2 as

W3 =W1W2

√
2/(W 2

1 +W 2
2 ).

To illustrate the influence of the model on the
shape of grains in Figs. 8a–c we present the results
of the oriented grain growth with preferred direction
y simulated with the square (a), cross (b) and elliptical
(c) models, respectively.

3.2. A n i s o t r o p i c g r a i n g r ow t h

3.2.1. Anisotropic grain growth in solid state

While in the oriented grain growth the preferred
direction of the growth is the same for all grains, in
case of anisotropic structures it is related only to a
restricted number of grains [39]. The geometrical an-
isotropic grain growth can be due to crystallographic
effects [40]. In the simulation procedure the direction
of growth of an anisotropic grain is random. For each
anisotropic grain, we assign an arbitrary direction of
the growth. For square simulation lattice it is one of
the four directions and for triangular simulation lat-
tice it is one of the three directions. Then we proceed
according to the following algorithm:
– orientationQ is divided into two intervals 〈1, QE〉

and 〈QE + 1, Q〉 proportionally to desired percentage
pE of anisotropic grains, i.e., QE = Q − pE · Q/100;
– anisotropic lattice points are randomly assigned

orientations from the interval 〈1, QE〉;
– the rest of lattice points, obeying normal gain

growth law, are randomly assigned orientations from
the interval 〈QE + 1, Q〉;
– for lattice points belonging to normal grains, we

apply the algorithm described in [15];
– for lattice points belonging to anisotropic grains,

we apply the algorithm described in section 3.1 with
preferred grain growth direction appertaining to the
given orientation of the anisotropic grain.
In Fig. 9 we show anisotropic grain growth, which

was simulated on the hexagonal lattice. The elliptical

Fig. 8. Oriented grain growth simulated on the square sim-
ulation lattice with input parameters N = 200, Q = 50, α
= 5, t = 1000 MCS using square model (a), cross model
(b) and elliptical model (c). Direction of preferred growth

is y.
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Fig. 9. Anisotropic grain growth according to the elliptical
model simulated on the hexagonal simulation lattice with
input parameters N = 150, Q = 50, α = 5, A = 5 %, t =

1000 MCS and W1 : W2 : W3 = 1 : 1 : 20.

simulation model with weights ratios W1 : W2 : W3
= 1 : 1 : 20 and with 10 % of anisotropic grains (A)
(shaded lattice sites) has been chosen.

3.2.2. Anisotropic grain growth in liquid phase

The above presented simulation algorithm of the
grain growth in the presence of liquid phase is dealing
with the growth behaviour under isotropic energy of
solid/liquid interface γSL. However, in polycrystalline
materials there exist material systems (ceramics, cer-
mets, tungsten carbide, α-alumina, etc.), which have
the anisotropic behaviour of particles during liquid
phase sintering [30, 41, 42]. If the neighbour of a solid
particle is the simulation site corresponding to the li-
quid phase the energy balance is calculated according
to the following algorithm:
– For energies of the interface between solid

particles and a liquid phase γSL (γSL ∈ 〈0, 1〉) and
between solid and solid particles γSS (γSS ∈ 〈0, 1〉) it
holds

γSS > γSL;

– let us denote

a = γSL,
b = (γSS − γSL)/3;

– the direction of the interaction for square lattice

direction = Q mod 4

and for hexagonal lattice

Fig. 10. The chart of possible positions of the neighbours
(a) and corresponding point B if the position was chosen

2 (b).

direction = Q mod 3,

where Q is the orientation of the solid particle lattice
site. The directioni is chosen according to the position
of the neighbour and the chart shown in Fig. 10a, e.g.
for the point B in Fig. 10b the directioni = 2;
– the increase of the energy in energy balance cal-

culation around the solid particle for the directioni

then is

a+ b · (3− |direction− directioni|) .

The simulated structures with anisotropic grain
growth in liquid phase are shown in Fig. 11 with con-
centrations of liquid L = 20 % (a), 40 % (b) and 60 %
(c), respectively.

4. Conclusion

In the paper, we have given an account of various
simulation algorithms of the grain growth in polycrys-
talline materials. We have presented sophisticated al-
gorithms of pore migration, simulation of grain growth
in the presence of liquid, in oriented and anisotropic
structures.
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Fig. 11. Anisotropic grain growth in the presence of liquid
phase simulated on the hexagonal simulation lattice with
input parameters N = 200, Q = 50, α = 5, A = 100 %,
t = 1000 MCS, γSL = 10, γSS = 90 and L = 20 % (a), 40 %

(b), 60 % (c).

Different input parameters can influence the av-
erage grain size, which is very important parameter
because it is closely connected with many proper-
ties of simulated structures. It can be obtained by
scanning the whole simulation lattice using intercept
length method. Histograms of the studied parameters
are automatically recorded during the simulation.
The average grain size decreases with increasing

number of orientations Q. It is the factor that refers to
the particle size distribution in real powders. The sim-
ulation carried out for small value of Q results in small
number of irregular grains. On the contrary, the high
value of Q gives small and regular grains similar to the
monodisperse particle distribution. Another import-
ant parameter that influences the average grain size
is simulation time. The study of dependence of this
parameter on time has shown that to obtain stable
simulation structure the simulation time 1000 MCS
is sufficiently long. In [32] the detailed study of the
dependence of the size of simulation lattice, type of
simulation lattice (square or hexagonal), a number of
orientations Q, temperature coefficient α, etc. on the
average grain size was carried out and the results were
discussed.
The simulation algorithms presented above were

implemented in the software packageWinSimul, which
was developed at the Institute of Physics, Slovak
Academy of Sciences. It allows to simulate the struc-
ture development, to evaluate the simulated struc-
tures, to display lattice during simulation or to record
display frames in time in the form of AVI files. It also
can display simulation results in the form of average
grain size, average area and neighbours (topological)
histograms or time dependences of these parameters.
It is possible to display several simulations or simula-
tion results simultaneously for various input paramet-
ers.
A modular structure of the program WinSimul

provides a great flexibility of simulation configura-
tions. Presented work shows only some possible com-
binations from many others, which may occur in prac-
tice.
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