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Abstract

The Helming method is employed to improve the definition of the orientation classes used
to define the crystallographic texture in abnormal grain growth simulation. It involves fitting
the experimental texture measured by X-ray or neutron diffraction by several orientations
modelled by Gaussian functions. The orientation classes are then used to describe the dis-
tribution of grain boundary energy on experimental microstructures characterized by EBSD
(Electron Back Scattered Diffraction) and introduced as input data into the simulation. The
approach is tested in the case of the Monte Carlo simulation of abnormal growth of Goss
grains in a Fe3%Si sheet. The results are compared with those obtained through classical
methods which arbitrarily impose spreading around the main texture components. Finally, it
appears that the evolution of their volume fraction during the simulation is very sensitive to
the definition of the orientation classes.

K e y w o r d s: texture components, abnormal grain growth, Monte Carlo simulation, grain
boundary energy

1. Introduction

The occurrence of secondary recrystallization in a
microstructure where primary recrystallization is com-
plete depends on several parameters [1, 2] and has
been notably simulated using Monte Carlo techniques
[3–8].
One phenomenon is the pre-existence of grains that

are larger than the average size of the matrix grains.
Another one is the influence of the particles on the
growth process. Such phenomena have been observed
for example in nickel-based superalloys produced by
powder metallurgy techniques for high temperature
applications [9–11].
In some materials, however, the size advantage

is not observed. In this case, the abnormal growth
can develop through anisotropy of the grain boundary
(GB) energy and mobility, since these last quantities
depend on the misorientation between grains [12–14].
This idea has motivated the development of models in
which mobility and interfacial energy of the growing
grain are taken into account (see [5, 15, 16]).
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The energy and mobility of all the GB present
in the polycrystal must then be experimentally dis-
covered for each material studied. This involves a
great deal of experimental work and this is gener-
ally why the crystallographic orientation number (as
well as the number of GB types) is decreased. For
example, Rollet et al. [5] used only 2 texture compon-
ents, Abbruzzese et al. [17] and Baudin et al. [18] con-
sidered 3 texture components, Paillard et al. [19] 4 tex-
ture components. . . Kunaver and Kolar [20] have pro-
posed a three-dimensional computer simulation of an-
isotropic grain growth in ceramics. For that purpose,
they separated the grains into two distinct classes: the
matrix (normal growth) and the grains whose growth
was anisotropic. The grain boundaries exhibit a high
energy in one direction and a lower energy in the oth-
ers.
This work describes an intermediary approach,

which involves the use of more than 3 or 4 texture
components but without taking into account the com-
plete orientation space. Indeed, it seems evident that
the texture component number and their volume frac-
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tion (which is linked to their spreading) affect the sim-
ulation results.

2. Abnormal grain growth simulation

The Monte Carlo simulation principle has already
been described elsewhere [19]. The simulation is per-
formed from experimental data [21] characterized by
Orientation Imaging Microscopy (OIMTM) [22]: the
orientations are automatically measured by EBSD [23]
at each point of a hexagonal grid and the microstruc-
ture is then reconstructed from the orientation meas-
urements.
To test the influence of the texture component

number and their spreading on the simulation of the
abnormal growth, the Fe3%Si alloy was chosen be-
cause of the large amount of existing experimental
data and because abnormal growth is still studied in
such a material (see for example [24–26]).
Most transformer cores are made of Fe3%Si (HiB

or GO grades) textured sheets, which minimize Watt
losses thanks to the presence of the {110}〈001〉 Goss
texture where the easiest magnetization directions
〈001〉 are parallel to the magnetic field direction.
Development of such a texture occurs by abnormal
growth of a minority of Goss grains present in the
primary recrystallized matrix. If the industrial pro-
cessing has been improved over these last few decades,
the mechanisms of the Goss secondary recrystalliza-
tion texture development are not well established [24].
However, with the different approaches, the nature of
grain boundary (misorientation and rotation axis, the
GB plane is not taken into account) plays an import-
ant role in their mobility. For example, a theory as-
sumes that the boundaries of Goss oriented grains are
more often of the coincident site lattice (CSL) type
than other types of grain boundaries. Moreover, in the
presence of precipitates, the CSL boundaries are sup-
posed to be less dragged than the general boundaries.
The Goss grains can then grow faster than the others.
Keep in mind that in this paper the possible mech-

anisms for the abnormal growth are not discussed. In
fact, the material is only chosen for convenience pur-
poses in order to show the feasibility and the interest
of the proposed approach that mainly consists in de-
fining the orientation classes and so the texture used
in the simulations.
After primary recrystallization (Fig. 1), the aver-

age grain diameter is quite small (about 15 µm) and
therefore to have a sufficient grain number (> 1000)
[27, 28], the measured area with EBSD is a square
of 450 × 450 µm, the step size being equal to 2 µm.
The primary recrystallization texture is composed of
the {111}〈112〉 main component and the {100}〈012〉
secondary component (see for example [29]).
Since the growth rate depends on the mobility and

Fig. 1. Fe3%Si (grade HiB) – experimental microstructure
after primary recrystallization analysed by OIM and re-
constructed from the grain boundary description.

the energy of grain boundaries, in a previous study
[30], the values (Table 1) used to simulate the abnor-
mal grain growth were chosen from those proposed by
Abbruzzese et al. [6] (see [19]). These values have ar-
bitrary units and have been classified to reproduce the
experimental observations, i.e. the growth of the Goss
grains.
From these data, several simulations were initially

performed to test the influence of the texture com-
ponent number and their spreading on the simulation
results.

2.1. E f f e c t s o f t h e t e x t u r e c o m p o n e n t
n umb e r o n t h e s i m u l a t i o n r e s u l t s

Let us assume that the initial microstructure of
Fe3%Si sheet is composed of four components: the
Goss component {110}〈001〉 with a 6◦ spreading
(which allows us to find Goss grains in the microstruc-
ture, see [30]), the {111}〈112〉 and {100}〈012〉 com-
ponents with a 25◦ spreading and the random part of
the initial texture. Figure 2 shows the volume fraction
evolution of each component during the simulation.
Then, the same calculation is reproduced but with
only three components, so the {100}〈012〉 component
is introduced into the random part.
Figure 2 allows us to compare the results obtained

with the two calculations and shows that they con-
verge to the same values. Indeed, in each case the Goss
grains abnormally grow and the other components dis-
appear. However, several important differences should
be noted.
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Ta b l e 1. Energy and mobility coefficients (arbitrary values)

Boundary type
{110}〈001〉
{111}〈112〉

{110}〈001〉
{100}〈012〉

{110}〈001〉
Random

{111}〈112〉
{100}〈012〉

{111}〈112〉
Random

{100}〈012〉
Random

Energy 330 260 300 360 380 350

Mobility 2.5 0.1 2.5 2.3 2.5 2.5

Boundary type
{110}〈001〉
{110}〈001〉

{111}〈112〉
{111}〈112〉

{100}〈012〉
{100}〈012〉

Random
Random

Energy 400 450 600 650

Mobility 0.1 0.2 0.1 0.4

Fig. 2. Evolution of the volume fraction of (a) the Goss and (b) {111}〈112〉 orientation classes during the simulation (�)
with 4 or ( ) 3 texture components. The final simulated microstructures are presented on Fig. 2a (the grey grains are the

Goss grains).

With the second calculation (3 components), the
{111}〈112〉 component begins to grow and then dis-
appears. Consequently, the recrystallization mechan-
ism (in the simulation) is not the same and the final
microstructure can be different as verified for this ex-
ample. Indeed, at the end of the simulation, the grain
number (and the grain shape) is not the same and
consequently, the physical properties of the material
can be different.

2.2. E f f e c t s o f t e x t u r e c o m p o n e n t
s p r e a d i n g o n t h e s i m u l a t i o n r e s u l t s

An abnormal growth kinetics is also modified by
spreading of the chosen texture components. Indeed,
each texture component or orientation class must be
characterized by the orientation and spreading around
this orientation. The same initial microstructure of the
Fe3%Si sheet is characterized by the 4 components
described above, but the spreading of the {111}〈112〉
and {100}〈012〉 orientations is chosen equal to 15◦ for
the first calculation and 25◦ for the second calcula-
tion. Firstly, it is verified that the final grain number
is obviously not the same. Moreover, the texture com-
ponents evolve with the orientation spread as shown
in Fig. 3. The difference is particularly visible for the
{111}〈112〉 component since its volume fraction con-

tinuously decreases for a calculation, whereas a nor-
mal growth is observed in the first steps of the other
calculation.
These simple examples show that the choice of the

component number and their shape (half the width
of the corresponding gaussian functions) are import-
ant parameters in abnormal growth simulation, also
knowing that the experimental mechanisms are often
not well known. However, for such a calculation, the
number of variables (i.e. the number of texture com-
ponents) must stay quite low and it must be sufficient
to give a good texture description which is possible
with the component methods [31, 32].

3. Determination of orientation classes

The texture was measured on the surface of the
Fe3%Si sheet (grade HiB) with a thickness of 320 µm
after primary recrystallization by X-ray diffraction
in reflexion-transmission to have complete pole fig-
ures [29]. Assuming the sample orthotropic symmetry,
the even part of the Orientation Distribution Func-
tion (ODF) is calculated using the harmonic method
(L = 22) and the total ODF F (g) is determined using
the positivity method (see [27]).
As discussed above, the two main components near
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Fig. 3. Evolution of the volume fraction of (a) the Goss and (b) {111}〈112〉 orientation classes during the simulation with
(�) 15◦ spreading and ( ) 25◦ spreading for the {111}〈112〉 and {100}〈012〉 orientations.

Ta b l e 2. Comparison of the component volume fraction
estimated with the Rouag and the Abbruzzese approaches

{111}〈112〉 {100}〈012〉

Rouag approach 50.0 % 20.0 %
Abbruzzese approach 22.0 % 8.5 %

{111}〈112〉 and {100}〈012〉 can be used to charac-
terize the sheet texture. Regarding the volume frac-
tion of the texture components, Rouag [33] initially
mentioned that the Goss orientation is undetected by
X-ray diffraction which means that its volume fraction
is less than 5 % for the HiB grade: an estimate from
metallographic observations leads to about 10−2 %.
However, this estimation is an average since the pres-
ence of Goss clusters can locally modify this percent-
age [21]. Secondly, Rouag [33] estimated the volume
fraction of the two main components from the ODF
calculation and found the values given in Table 2. This
volume fraction is calculated by discrete summation of
elementary volume fractions defined in the Euler space
for each domain (∆ψ = ∆θ = ∆φ = 5◦ with the Roe
notation [34]), on all the retained orientations in the
equivalent tubes which define the two main compon-
ents. In this calculation, the minimal ODF value is set
at 1.
In another approach, Abbruzzese et al. [6] used a

15◦ conic dispersion around ND (Normal Direction)
for the {111}〈112〉 component for their grain growth
simulation. Moreover, they defined the Goss compon-
ent with two classes: the Goss grains ±5◦ around RD
(Rolling Direction) and the grains from ±5◦ up to
±15◦ around both 〈001〉//RD and 〈110〉//ND.
To simplify the comparison with the Rouag ap-

proach, the Abbruzzese type calculations are per-
formed with the same orientation classes, each of
them being defined by a spreading of 15◦ around the
ideal components except for the random class. Table 2

shows that the results obtained with the two different
approaches are very different and consequently, the
simulations give very different simulated microstruc-
tures (see for example [21]).
The Rouag approach does not seem realistic since

it leads to a great deal of dispersion around the
{111}〈112〉 and {100}〈012〉 components. Thus, if
a sphere is centered on the ideal orientations of
{111}〈112〉 and {100}〈012〉 that define the corres-
ponding classes, the maximummisorientation between
a given orientation inside the class and the ideal ori-
entation must reach about 30◦ and 22◦ respectively to
meet the volume fraction given in Table 2. The same
problem is observed with the Abbruzzese approach for
the random class that becomes very large since the
dispersion around the main components is quite low.
Thus both approaches described previously are not

satisfactory and the texture description must therefore
be improved. The component method can be used to
do that. This method allows us to describe a texture
by only several components that can be defined from
an ODF calculation [32] or directly from the experi-
mental pole figures [31]. Using this last one, i.e. the
Helming method, the texture is fitted by 12 compon-
ents modelled by Gaussian functions (Table 3), with
the background (fon) value being approximately equal
to zero. Note that the calculation has been performed
assuming the orthotropic symmetry of the texture. For
future applications to particular materials it could be
important to use the triclinic symmetry of the tex-
ture. This modification simply involves increasing the
orientation class number and taking into account the
multiplicity of the ideal orientations characterizing the
classes.
The ODF can be calculated as the sum of the 12

Gaussian functions. Since the total ODF determined
from X-ray measurements is calculated using the har-
monic method (Fig. 4), this last method is used with
the same series expansion order, L = 22. Figures 4c,d
show that this procedure allows to reproduce the total
ODF (Figs. 4a,b) knowing that the fit could be im-
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Fig. 4. ODF calculated from pole figures measured by X-ray diffraction: (a) ϕ = 0◦ (intensity levels at 1, 1.4, 1.8, 2.2, 2.6)
and (b) ϕ = 45◦ (intensity levels at 1, 2, . . ., 11) ODF section plot. ODF calculated from the 12 components defined in
Table 3: (c) ϕ = 0◦ (intensity levels at 1, 1.4, . . ., 3.8) and (d) ϕ = 45◦ (intensity levels at 1, 2, . . ., 10) ODF section plot.

Ta b l e 3. Definition of the 12 components determined with the Helming method

Texture components Gaussian functions

Number ψ (◦) θ(◦) ϕ (◦) Half width (◦) Weight

1 55.2 58.2 124.7 13.8 18.4
2 2.0 59.0 138.9 12.7 12.6
3 248.9 64.9 112.9 15.3 11.0
4 86.3 67.4 33.3 18.6 5.1
5 323.0 54.7 136.0 10.8 2.6
6 135.0 52.5 134.5 9.2 2.5
7 205.9 60.4 128.6 10.5 1.3
8 266.3 43.1 43.4 11.0 0.9
9 342.7 85.5 168.3 19.5 27.1
10 39.8 92.3 178.1 8.0 0.9
11 30.8 74.5 106.7 16.8 11.9
12 87.1 119.8 95.8 17.0 5.7

Ta b l e 4. Comparison of the component volume fraction
estimated with the Rouag and the Helming approaches

{111}〈112〉 {100}〈012〉

Rouag approach 50.0 % 20.0 %
Helming approach 54.4 % 28.0 %

proved by increasing the component number to define
the {100}〈012〉 component. Indeed, as the {111}〈112〉
component seems to play the most important role in
the abnormal growth theories [24], it has to be well
fitted.
All the components defined in Table 3 can be as-

signed to one of the orientation classes defined above,
therefore the components 1 to 8 can be assigned to
the {111}〈112〉 class, the components 9 and 10 to the
{100}〈012〉 class and the components 11 and 12 to
the random class. Then, the volume fraction of each
orientation class can be calculated and compared to
those estimated with the Rouag approach (Table 4).
Table 4 shows a good agreement between the res-

ults obtained with the two different approaches. As
explained previously, the more important difference is
observed in the {100}〈012〉 class which is overestim-
ated by using only two components.
The influence of the initial texture description on

the simulated microstructure during abnormal grain
growth must now be tested.

4. Abnormal grain growth simulation using
the texture components determined with the

Helming method

4.1. C h o i c e o f t h e e n e r g y a n d
m o b i l i t y v a l u e s

The energy and mobility values described in
Table 1 are maintained. However, a spreading is intro-
duced (Table 5) to take into account the orientation
sub-classes as described in the next section.
Because the orientation number has increased us-

ing the Helming method (12 components, see Table 3),
the energy and mobility coefficients need to be adjus-



336 T. Baudin et al. / Kovove Mater. 46 2008 331–338

Ta b l e 5. Energy coefficients (arbitrary values)

Boundary type {110}〈001〉
{111}〈112〉

{110}〈001〉
{100}〈012〉

{110}〈001〉
Random

{111}〈112〉
{100}〈012〉

{111}〈112〉
Random

{100}〈012〉
Random

Energy 330–301 260–231 300–261 360–351 380–361 350–331

Boundary type {110}〈001〉
{110}〈001〉

{111}〈112〉
{111}〈112〉

{100}〈012〉
{100}〈012〉

Random
Random

Energy 400 450-420 600-570 650

Fig. 5. Evolution of the volume fraction of (a) Goss grains and (b) {111}〈112〉 grains during the simulation: (�) LS
approach, ( ) IS approach, (�) HS approach. The corresponding microstructures obtained for 1000 MCS are presented.

The grey grains are the Goss grains.

ted. For that, a simplified approach is proposed:
(i) The mobility values defined in Table 1 are kept

and only the energy values are modified.
(ii) As previously mentioned, an orientation class

is composed of several components (see Table 3).
The {111}〈112〉 class is therefore defined by the sum
of 8 texture components or 8 sub-classes and the
{100}〈012〉 and the random classes are characterized
by 2 sub-classes.
(iii) The energy between two defined orientation

classes is not characterized by one value (see Table 1)
but by an energy range between Emax and Emin as
given in Table 5.
(iv) To calculate the GB energy value (E ) between

two grains, their orientation is firstly associated to
the corresponding orientation classes or sub-classes.
Since the relationship between E and the misorienta-
tion (∆θ) between these two orientations is not experi-
mentally known, E is then defined by a linear evolution
in the range between Emax and Emin as a function of
∆θ. This linear relationship is obviously oversimpli-
fied.

4.2. A b n o r m a l g r a i n g r ow t h
s i mu l a t i o n r e s u l t s

The three Abbruzzese, Rouag and Helming ap-
proaches will now be respectively named Low, High
and Intermediary Spreading approaches, or LS, HS

and IS approaches. Here the HS approach is not
perfectly applied since spheres centered on the ideal
orientations that define the classes are used with
a spreading of 30◦ and 22◦ respectively for the
{111}〈112〉 and {100}〈012〉 components as described
above.
Starting from the EBSD map (Fig. 1) as initial

input data, the Monte Carlo simulation has been per-
formed to 2500 Monte Carlo steps (MCS). This num-
ber has been chosen as a function of the Goss grain
size. Indeed, when the Goss grains become very large,
they are cut off by the microstructure limits. Such
a microstructure cannot be quantitatively interpreted
since the grain size is indeterminate. Because the Goss
component evolution is the most interesting and be-
cause the {111}〈112〉 orientation is well fitted (un-
like the {100}〈012〉 orientation class), only the volume
fraction evolution of these two components during the
simulation is discussed. With regard to the two other
orientation classes, i.e. {100}〈012〉 and random ones,
the curves are not very different from those described
by Paillard et al. [19]. There is normal growth of the
{100}〈012〉 grains at the beginning of the simulation
before a decrease when the Goss grains consume these
grains.
Figures 5a and 5b respectively show the evolution

of the {110}〈001〉 and {111}〈112〉 components during
the abnormal growth simulation.
These curves have been calculated using the three
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Fig. 6. Evolution of the volume fraction of {111}〈112〉
grains defined by the 8 sub-classes described in Table 3)
(several curves are superimposed at level 0 of the volume

fraction).

LS, HS and IS approaches. The simulated microstruc-
tures are very different as seen in Fig. 5a for 1000
Monte Carlo steps. It can be said that the Goss grain
number as well as the Goss volume fraction can be
very different in the three simulations. These examples
prove the necessity to correctly choose the orientation
classes to provide an accurate description of the final
microstructure after secondary recrystallization.
For the {111}〈112〉 component, the HS approach

obviously leads to the highest volume fractions. In-
stead, the two other approaches give similar results at
least when the MCS number is greater than about 300.
Below this limit, the LS approach shows an increase of
the volume fraction of grains having this orientation
that is not observed on the other curves.
With the IS approach, the {111}〈112〉 volume frac-

tion is calculated as the sum of the 8 sub-classes. How-
ever, it is possible to follow the evolution of the volume
fraction of each sub-class as described in Fig. 6.
Therefore, it appears that all the components have

not the same behaviour since there is an increase in
one of them with the IS approach (Fig. 6). This com-
ponent obviously corresponds to a near orientation
class used with the LS approach. So with the IS ap-
proach, the behaviour of the different texture compon-
ents inside the orientation classes generally used in the
literature can be described more precisely.
Let us note that Figs. 5 and 6 show differences over

brief periods of time due to the chosen approaches, but
a convergence appears for long periods of time. For
these last conditions, the microstructure is composed
of a very limited grain number depending on the initial
Goss volume fraction after primary recrystallization.
The simulation of brief times is however very import-
ant since it can be useful to better understand the
possible abnormal growth mechanisms which are still
not understood very well from an experimental point
of view [24]. In order to precisely reproduce the tex-
ture, it is interesting to use the Helming method to
reproduce the mechanisms during the secondary re-
crystallization.

5. Conclusion

This study, using the Helming component method,
is an attempt to improve the texture description to be
used in the abnormal growth simulations. The Monte
Carlo simulation has been applied here but this prob-
lem remains for all the other types of simulation such
as the cellular automaton model or the vertex model.
In its principle, the approach only involves increas-
ing the orientation class number. Consequently, the
simulation results obtained by the combination of the
Helming method and the Monte Carlo simulation, are
obviously better than those obtained by the classical
simulations.
To become predictive, such calculation should take

into account experimental energy and mobility values.
Measurements on bicrystals or tricrystals would then
need to be taken. Another approach could involve ad-
justing these parameters by comparing numerical and
experimental results, this comparison being facilitated
since the simulation is performed using experimental
data.
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