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Prediction of static shear force and fatigue life of adhesive joints
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Abstract

In this study, a static shear force and fatigue life prediction model was developed using
artificial neural network (ANN). The developed model was used to predict static shear force
and fatigue life of adhesively bonded cylindrical joints for the surface roughness, bonding clear-
ance and adherent such as steel, bronze and aluminium. The results showed that developed
artificial neural network model was convenient and powerful tool for static shear force and
fatigue life prediction of adhesively bonded cylindrical joints.
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1. Introduction

Since before recorded history, mankind has been
joining materials together to create functional items.
To enhance effectiveness and efficiency, many prehis-
toric as well as modern devices required the assembly
of several components. Over time, the sophistication of
joining methods has increased to include a wide vari-
ety of mechanical fasteners, numerous welding meth-
ods and the use of adhesives to hold components to-
gether [1].
Mechanical fasteners such as bolts, screws, rivets,

and nails have been widely and successfully employed
in building the man-made world around us. A num-
ber of advantages continue to make these appropriate
joining techniques in certain instances. Using them of-
ten requires no surface preparation, although drilling
is needed in most cases. Unlike many adhesives, mech-
anical fasteners have a very long shelf life, generally
have less environmental concerns, and may facilitate
repair because they can often be removed and rein-
stalled with little or no damage to the joined compon-
ents. Mechanical fasteners facilitate inspection; a loose
or missing rivet may be easily seen and repaired. How-
ever, mechanical fasteners and welds are not practical
in many situations. One of the key factors is simply
that drilling a hole induces stress concentrations that
weaken the components to be joined. In fact, the com-
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ponents may need to be made thicker simply to with-
stand the higher stresses imposed by holes, especially
loaded holes associated with load bearing mechanical
fasteners [2].
Adhesive bonding is becoming an increasingly

viable alternative for joining materials for struc-
tural, non-structural, and semi-structural applica-
tions. Nowadays, bonded joints are preferred over
riveted, spot-welded, and fastened structures [3–5].
The use of bonded structures has been growing in
the aircraft industry over the past few years. Even
though flying vehicles have progressed from glorified
kites to commercial jet transports, supersonic mis-
siles and space vehicles, adhesively bonded structure
has been crucial to virtually every one. The use of
adhesive bonding is widespread in the aerospace in-
dustry because it has characteristics that are particu-
larly well suited to aerospace applications: weight effi-
ciency, sonic vibration damping, ability to easily pro-
duce aerodynamically smooth surfaces and the fatigue
resistance [1].
Fatigue cracking is such a problem that a large

number of joints on modern commercial aircraft are
sized by fatigue considerations and not by ultimate
strength requirements. Typical commercial transport
aircraft may be required to fly as many as 60,000 hours
over a span of 30 years and 20,000 flights, plus approx-
imately 100,000 miles in taxi operations. During this
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period of time, commercial aircraft structures will ex-
perience thousands of fatigue cycles at high and low
magnitudes under many adverse climatic conditions.
On the other hand, typical military aircraft designed
for 6,000 hours of service operations are subject to
fatigue cycles at higher magnitudes due to extreme
accelerations and manoeuvres [6].
A joint of thin components made with many small

fasteners is highly susceptible to fatigue cracking be-
cause of the high stress concentrations at the edges
of the fastener holes. A properly designed adhesively
bonded joint eliminates or reduces the stress concen-
tration at fasteners and increases the fatigue life of
a given joint. Adhesively bonded doublers are also
more effective at slowing or stopping the growth of fa-
tigue cracks in an adjacent field than a mechanically
fastened doubler. Finally, bonded components can be
used to introduce dual load-carrying capability. Ad-
hesively laminated sheets tend to resist propagation
of cracks from one component to another, resulting in
an inherently fail-safe design [6].
Due to the lack of reliable methods for stress ana-

lysis and fatigue life prediction, particularly for low-
-cycle, high-stress levels under cold (−40◦C), wet, and
room temperature conditions which are representat-
ive of service conditions where fatigue exists; many
studies attempt to predict the fatigue life of adhes-
ively bonded components. Many studies of predicting
the fatigue life behaviour of adhesively bonded joints
address materials, such as stainless steels [7] or com-
posite materials [8], but only rough data are avail-
able for static shear force and fatigue life of adhes-
ively bonded cylindrical steel, bronze and aluminium
joints. Additionally many studies address fatigue per-
formance of the adhesively bonded single-lap joints [9,
10] and many studies attempt to predict fatigue life
using linear regression or similar non-adaptive meth-
ods. We have classified these as non-adaptive because
the “shape” of the function is pre-determined by the
authors rather than adapted to the data. In contrast,
neural network methods are adaptive functions.
In this paper, a static shear force and fatigue life

prediction model are developed using Bayesian artifi-
cial neural network. Developed model is used to pre-
dict static shear force and fatigue life of adhesively
bonded cylindrical joints for the surface roughness,
bonding clearance and adherent, such as steel, bronze
and aluminium material.

2. Experimental

In this study, steel, bronze, aluminium and Loctite
638� were used as the model adherents and adhes-
ive, respectively. A complete description of the joint
design and fatigue testing procedures can be found in
[11]. Additionally, the effects of surface roughness, ad-

herent and bonding clearance on the static shear force
and fatigue behaviour of adhesively bonded cylindrical
joints can be found in [12–14].

3. ANN modelling

In subsequent sections, after a brief introduction
to ANN, an attempt has been made to predict static
shear force and fatigue life of adhesively bonded joints
by using the data from [11–14].
Neural network modelling is an empirical model-

ling method in which a very flexible function is fitted
to a set of data by adjusting the parameters of the
network, also known as the weights. Basically, artifi-
cial neural networks are computer programs designed
to develop and discover new information by using the
learning function like a human brain. It is very hard or
impossible to develop these skills with traditional pro-
gramming methods. For this reason, it can be said that
artificial neural network is a computer science division
about adaptive information processing developed for
occasions where the programming is very hard or im-
possible [15].
Technically, the most basic function of artificial

neural networks is determining an output set for each
input set given to it. To achieve this, the network is
given the ability to make generalizations by learning
from sample cases. With this generalization, output
sets corresponding to similar cases are determined. It
is important to draw attention to a point that an arti-
ficial neural network does not give information about
how it transforms an input vector to an output vector.
When artificial neural networks are considered in an
engineer’s point of view, they can be seen as a “black
box”. Black boxes take information from the outside
and give output to the outside. In other words, arti-
ficial neural network doesn’t have the ability to ex-
plain how it forms the results. To give the artificial
neural networks the ability to explain will be a very
important contribution to the science world. It must
be known that as number of inputs and hidden layers
increase, the accuracy rate of artificial neural networks
increase in the same ratio [16].
The first stage of forming an artificial neural net-

work is to prepare a suitable database including in-
puts and outputs. There is no numerical limit in the
data that will be used in the artificial neural network.
On the contrary, an increase in the number of data
increases accuracy of the model. But there is an im-
portant point here: only the data effecting outputs
must be entered as the data. This rule is also valid for
complex problems. To decrease the calculation time of
the problem, only the most relevant parameters can be
given as input. The structure of a typical feed forward
network with one input, nine hidden units and two
outputs as used in the present study is illustrated in
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Fig. 1. The structure of a feed forward neural network with
three inputs, nine hidden units and two outputs.

Ta b l e 1. Minima and maxima for each input variable
included in the database

Data Minimum Maximum

Bonding clearance, s (mm)

(Quantitative variable)

0 0.3

Surface roughness, Ra (µm)

(Quantitative variable)

0.45 6.2

Adherent material

(Qualitative variable)

1 (Steel) 3 (Aluminium)

Fig. 1. Additionally minima and maxima for each in-
put variable included in the database can be seen in
Table 1.
As stated above, the process of determining weight

values of process elements’ links in artificial neural
networks is called “learning of the network”. In the
beginning, these weight values are randomly assigned.
The aim is to find the weight values that will produce
the accurate output for the examples shown to the net-
work. Examples are shown to the network many times
to find the most accurate weight values. The network
having the accurate weight values means it has the
ability to make generalizations about the case it rep-
resents. This process is called the learning of the net-
work. The changes in weight values are governed under
certain rules. These rules are called learning rules.
A neural network is traditionally trained by optim-

izing its parameters with regard to a given error func-
tion. This results in an optimum set of weights, which
are in turn used to make predictions. In a Bayesian

approach however, a probability distribution of weight
values is fitted to the data. Where data are sparse, this
distribution will be wide, indicating that a number of
solutions have similar probabilities. If, on the contrary,
there are sufficient data, the probability distribution
for the network parameters will be narrow, indicating
that one solution is significantly more probable than
others [17]. For further details on the method, authors
point to the review by Mackay [18].
In a first instance, half of the data sets were ran-

domly selected from the database to serve as a test.
None of these sets were used in training the present
network. The remaining data were then divided in two
sets, also randomly selected. The first one, contain-
ing 80 % of the lines, was used to train a number of
models, while the second, containing the rest of the
database, was used to validate the training and se-
lect an optimum committee of models. As mentioned
earlier, this procedure has been described numerous
times in the literature. In the present study, a com-
mercial package [19] was used which implements the
algorithm written by Mackay [20].

4. Results and discussion

Predicted and experimental relationship between
static shear force, number of cycles to failure and
bonding clearance, surface roughness of adherent ma-
terial can be seen in Figs. 2–7. The results showed that
developed artificial neural network model was conveni-
ent and powerful tool and provided appropriate data
for static shear force and fatigue life of adhesively bon-
ded cylindrical joints.
In Fig. 2, when the thickness of adhesive layer

increased, static shear force of the joint decreased
for the low surface roughness values. With increas-
ing surface roughness value, static shear force curve
was turning on the counter-clockwise direction. In the
other words, there is a transition point between static
shear force curves for different surface roughness val-
ues with bonding clearance about 0.2 mm. Therefore,
for low bonding clearances up to 0.2 mm finer surface
provides better static shear force values. With increas-
ing bonding clearance, rough surface provides better
static shear force.
As it can be seen in Fig. 3, when the thickness of

adhesive film layer increased, fatigue life of the joint
decreased considerably for all surface roughness val-
ues. However decreasing rate fell with increasing sur-
face roughness values. As the bonding clearance in-
creased twice and three times, load cycle number de-
creased about 40 % and 57 %, respectively for surface
roughness Ra = 1.5 µm, but just 85 % and 90 %, re-
spectively for surface roughness Ra = 6.2 µm. Higher
bonding clearances may be used to compensate for
differential thermal expansion or when the adhesive
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Fig. 2. Predicted and experimental relationship between
static shear force and bonding clearance for different sur-

face roughness values.

is used within existing design for maintenance pur-
poses. Under these situations better static shear force
and fatigue life can be obtained by increasing surface
roughness values.
Experimental and predicted relationship between

the static shear force and surface roughness results are

Fig. 3. Predicted and experimental relationship between
number of cycles to failure and bonding clearance for dif-

ferent surface roughness values.

shown in Figs. 4 and 5. When surface roughness in-
creased, static shear force and fatigue life increased up
to Ra = 2 µm surface roughness value for all bonding
clearances. With increasing surface roughness value,
static shear force and fatigue life of adhesively bonded
joints decreased considerably for all bonding clearance
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Fig. 4. Predicted and experimental relationship between
static shear force and surface roughness for different bond-

ing clearance values.

values. Similarly, as can be seen on Figs. 4 and 5,
better static shear force and fatigue life from thicker
adhesive layers can be obtained by increasing surface
roughness values. The reason of these transition points
may be complex interaction between adhesion mech-
anism such as mechanical interlocking and wetting.

Fig. 5. Predicted and experimental relationship between
number of cycles to failure and surface roughness for dif-

ferent bonding clearance values.

As it can be seen in Figs. 6 and 7, when the dif-
ferent adherent was used, static shear force and fa-
tigue life values of the joint changed considerably. The
highest joint strength in bronze adherent and the low-
est joint strength in aluminium adherent have been
obtained. The static shear force and fatigue life of



56 T. Sekercioglu, V. Kovan / Kovove Mater. 46 2008 51–57

Fig. 6. Predicted and experimental relationship between
static shear force and adherent material.

Fig. 7. Predicted and experimental relationship between
number of cycles to failure and adherent material.

steel joints have been obtained about 100 % more than
the static shear force and fatigue life of aluminium
joints. Aluminium has weak bonding forces with ad-
hesive materials due to the passive Al2O3 layer on the
surface of material. As it can be seen from the results,
anaerobic adhesive is not suitable for aluminium ma-
terials. Fatigue life of bronze joint is 20 % higher than
the fatigue life of steel joints. The bronze materials
have higher surface activity than aluminium materi-
als, due to the high surface energy of copper.

5. Conclusions

ANN method was applied for the prediction of the
static shear force and number of cycles to failure of
adhesively bonded cylindrical joints for the surface
roughness, bonding clearance and adherent such as
steel, bronze and aluminium. The following main con-

clusions may be drawn from the results of the present
study:
1. The ANN model indicates that the design para-

meters, bonding clearances, surface roughness and ad-
herent have a direct independent influence on the
static shear force and fatigue life. Effects of bond-
ing clearance, surface roughness and adherent on the
static shear force and fatigue life are explained below:
– When the thickness of adhesive film layer in-

creased, fatigue life of the joint decreased considerably
for all surface roughness values. However decreasing
rate was more rapid for lower surface roughness val-
ues.
– There is a transition point between static shear

force curves for different surface roughness values at
0.2 mm of bonding clearance. Therefore, for low bond-
ing clearances up to 0.2 mm finer surface provides bet-
ter static shear force values. With increasing bonding
clearances, rough surface provides better static shear
force.
– Significant variations were observed in static

shear force and fatigue life values of the joint when the
different adherent was used. The highest joint strength
was obtained in bronze adherent while the lowest value
was obtained in aluminium adherent. Therefore, an-
aerobic adhesive is not suitable for bonding of alu-
minium materials; it is suitable for the copper and
copper alloys.
2. The ANN model can be used as estimation tech-

niques to predict the static shear force and fatigue life
of the statically and dynamically loaded cylindrical
components.
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