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Calculation of the phase content of a steel plate at local heating
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Abstract

The model is proposed to describe the phase content formation in the low alloy steels
subjected to monotonous cooling. In particular, a procedure is developed to investigate the
phase content of thin steel plates heated by distributed moving heat sources with several
centres of localization. It is shown that the proper choice of the intensity and location of
the centres of heating makes it possible to halve the maximum content of martensite and
substantially decrease the non-uniformity of its space distribution in the zone of thermal
influence.

K e y w o r d s: martensite and bainite formations, heat conductivity, mathematical model-
ling, moving heat sources

1. Introduction

Various kinds of steel are widely used in engineer-
ing because they provide the required level of reliab-
ility while keeping other important properties. Dur-
ing a heating-cooling process, the solid steels undergo
phase transformations. Properties of a material and
consequently the properties of a final product de-
pend on its chemical content and structural state.
At given chemical content of a material, the phase
state of a solid as well as its time evolution determ-
ines functional properties of the product [1–3]. Low-
-alloy steels subjected to local heating undergo phase
transformations in limited volumes. It invokes spatial
non-homogeneity of such important material proper-
ties as reliability, hardness, resistance to corrosion and
leads to arising of residual stresses.
Therefore, there is a need in developing optimum

thermal processing techniques using known heating
sources in order to obtain a product of the required
properties. Developing of such techniques should be
grounded on suitable mathematical models to cap-
ture coupled physical and mechanical processes ac-
companying the process of the global or local thermal
processing. Such models would facilitate comprehens-
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ive analysis of all the important processes in a steel
product dependent on the characteristics of a heat
source and other heating conditions. Several ap-
proaches to solving this problem are reported in [4–6].
In this study, we propose a mathematical model to
describe evolution of the formation of the structural
state of steel products subject to gradual cooling. The
developed model can be used for tests of the effect of
normally spatial distributed moving heat sources on
the structural state of a steel plate. Such heat sources
model standard industrial devices like gaseous, induct-
ive and electric heaters [7]. In such a case, it is impor-
tant to investigate and optimize phase content and
stress state at mechanical and thermal loadings due
to existing heating regimes. The problem is related to
the development of local heating technologies. They
could be used as substitute of general heating as well
as in specific cases. In welding technologies, the heat-
ing by distributed heat sources is widely used. Here
we apply this idea in order to influence the process of
heat transfer in the body and, as a consequence, the
phase content formation in local domains of the body.
This influence can be achieved by the control of heat
sources power, their spatial localization and moving
velocity. In practice, so-called circular normally dis-
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tributed moving heat sources are used for this pur-
pose. They are characterized by the normal (Gauss)
distribution of heat flux power. In particular, such dis-
tributions are provided by ordinary gaseous, inductive
or electric heaters [6]. Then the goal of optimization
could be calculation of both the phase content of a
product itself and the parameters determined by the
phase content, for example the value and distribution
of residual stresses.
The general approach to solving the mentioned

problems consists in involving kinetic equations de-
scribing polymorphic transformations in solids [8, 9].
However, there are no standard methods to get these
equations.
In many technological processes the temperature

in each point of the solid changes gradually during
formation of non-equilibrium phase content. For these
cases the statistical data are correlated with the para-
meters of the phase content of the low alloy steels
on cooling [10]. In this study, the well-known math-
ematical model to capture formation of the spatially
non-homogeneous phase content of steels is used for
analysis and optimization of the phase content. The
model involves using statistical data. The model al-
lows to calculate parameters of the phase content and
the associated residual stresses in steel products sub-
ject to certain heat sources.

2. Phase content formation model

Equations of the model are obtained in three
stages. At the first stage, the thermal conductivity
equation is written along with boundary heat ex-
change conditions corresponding to the technological
process under investigation. Solutions of the thermal
conductivity equation being found, duration of the
material staying in the temperature range respons-
ible for phase content formation is calculated. At the
second stage, statistical approach is involved to the
description of the material phase content dependent
on its chemical state and duration of material stay-
ing in above mentioned temperature range. In doing
so, at given cooling conditions and calculated dur-
ation of material staying within temperature range
850–500◦C, the content of the martensite, bainite and
ferrito-perlite phases in each point of the steel body
is determined. At the last stage, when phase content
of the steel body is known, the continuum mechanics
equations are involved to determine stressed state of
the body.
The key parameter used in the mentioned approach

is a time interval when material temperature falls
within the range corresponding to complete austeniz-
ation and minimum stability of austenite. Because of
that, supposing known solutions of the heat conduc-
tion equation, the duration τ∗ of cooling from 850◦C

to 500◦C for points satisfying condition T ′ > Ac3 and
duration τ∗∗ of cooling from T ′ to Tm for points sat-
isfying condition Ac1 < T ′ < Ac3 (Ac1 is the tem-
perature of eutectic transformation of the steel) are
calculated using the following equations:

T (x, τ1) = 850◦C, T (x, τ2) = 500◦C, τ∗ = τ2 − τ1 (1)

for each point of the solid staying at the initial (before
cooling) temperature T ′ > Ac3, and

T (x, τ ′
1) = T ′, T (x, τ2) = 500

◦C, τ∗∗ = τ2 − τ ′
1 (2)

for each point of the solid falling in the temperature
range Ac1 < T ′ < Ac3. Here τ1, τ2, τ ′

1 are moments
of time when the temperatures T = T ′ are achieved,
respectively.
At the second stage the times τ∗ and τ∗∗ found for

each point are involved in calculation of contents of
martensite M, bainite B and ferrito-perlite FP in this
point. For this purpose the following correlations are
used:

M(τ0) = 100β(1− Φ(ln (τ0/τM)/lnSM)),

(FP)(τ0) = 100β(1− Φ(ln (τ0/τFP)/lnSFP)) +
+ 100(1− β), (3)

B(τ0) = 100−M(τ0)− (FP)(τ0),

where M(τ0), (FP)(τ0), B(τ0) denote respectively
martensite, ferrito-perlite and bainite content in the
point of interest; Φ(τ0) is the structure component of
the normal distribution function dependence on the
general cooling duration τ0 in the temperature range
Ac3 − Tm; β is the coefficient accounting for equilib-
rium phase content at cooling down from the tempera-
ture Ac1 < T ′ < Ac3; τM, τFP, SM, SFP are the coef-
ficients determined by the polynomial functions of the
steel phase content. The latter are given by formulas
[10]:

ln τM = −2.10+15.50C+0.96Mn+0.84Si+0.77Cr+
+0.74Mo+0.7Ni+0.3V+4.0Al+0.5W+0.8Cu−13.5C2,

lnSM = −0.56− 0.41C+ 0.10Mn+ 0.14Cr +
+ 0.30Mo + 2.70Ti + 1.1Nb + 0.5Cu− 1.7CMo, (4)

ln τFP = 0.34 + 5.20C+ 1.8Mn+ 0.53Si + 0.33Cr +
+ 2.90Mo + 1.30Ni + 1.50W+ 1.0Cu− 5.10C2,

lnSFP = 0.91− 0.90C+ 0.09Mn + 0.08Cr +
+ 0.34Mo+ 0.15Ni + 0.85V + 2.2Ti + 0.43W.

In [10], the above correlations are obtained at
β = 1 for the conditions of homogeneous cooling. In
our model it is supposed that correlations (3) and (4)
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are valid for the practical cases of arbitrary spatial
temperature distributions. Such an assumption could
be treated in a way similar to the statement about
local thermodynamic equilibrium. The cooling may
start from any temperature including one correspond-
ing to complete austenite state (T ′ > Ac3). Martens-
ite and bainite states would appear if cooling starts
from state with some initial austenite content. In the
model, we assume that while cooling from the initial
state is characterized by austenite content equal to β,
martensite and bainite contents are proportional to
initial austenite content while ferrito-perlite content
consists of two parts, namely the part at the start of
cooling 100(1−β) and the part appearing at austenite
decay.
The value β of austenite initial content can be

calculated from a steel state diagram. In our model
we adopt approximation for the β dependence on the
initial cooling temperature T ′ for the range of poly-
morphic transformations corresponding to tempera-
ture range Ac1 ≤ T ′ ≤ Ac3:

β =

⎧⎪⎨
⎪⎩
1, for T ′ > 850◦C,
(850◦C− T ′)
(850◦C− Ac1)

, for Ac1 ≤ T ′ ≤ 850◦C,

0, for T ′ < Ac1.

(5)

Phase content of a material in certain point is de-
termined by the cooling duration in the temperature
range Ac3−Tm. This phase content can be associated
with the averaged cooling rate in that temperature
range. If the cooling starts from temperature exceed-
ing Ac3 then averaged cooling rate can be written as

νc =
Ac3 − Tm

τ∗ . If cooling starts from the temperature

T ′ (Ac1 ≤ T ′ ≤ Ac3) when initial austenite content
falls in the range (0; 1), this rate is

ν′
c =

T ′ − Tm
τ∗∗ , (6)

where τ∗∗ is the cooling duration from T ′ to Tm.
For the points cooled from the temperature T ′

(Ac1 ≤ T ′ ≤ Ac3) we introduce conditional cooling
duration τ∗

c equal to theoretical cooling with the rate
ν′
c in the range Ac3 − Tm. Then

τ∗
c = τ∗∗ Ac3 − Tm

T ′ − Tm
. (7)

For cooling from arbitrary temperature T ′ we as-
sume

τ∗ =
{

τ∗, for T ′ > Ac3,
τ∗
c , for Ac1 < T ′ < Ac3.

(8)

The points do not undergo phase transformations if
they are cooled from the initial temperature less than
Ac1 (M = 0 %, B = 0 % is taken for these points).

At the third stage, we assume analogy between in-
fluences of the thermal and phase dilatation on the
body’s volume. Therefore, we calculate stresses due
to cooling by the expression:

σij =
E

1 + υ

[
eij +

1
(1− 2 υ)

(
υ e − (1 + υ)

ea
3

)
δij

]
,

(9)
where E is the Young’s modulus, υ is the Poisson ratio,
δij is the Kronecker delta, σij , eij are the components
of the stress and strain tensors, e = e11+ e22+ e33, ea
is the general dilatation (caused by changes in inter-
atomic distances and in the phase content of a steel).
For complete cooling of steel products we have

ea = βM ξM + βB ξB, (10)

where ξM =
M
100
, ξB =

B
100
; βM, βB are the bulk

dilatation coefficients. Completing Eqs. (4)–(10) by
equilibrium equations we obtain the set of models
equations to capture phase content and stress state
in a steel product.

3. Mathematical problem

Let us consider a thin plate, 10 mm in thickness.
The plate is heated by a set of moving normally cir-
cular heat sources (sources satisfying the Gauss law
of distribution for heat flux power) having three loc-
alization centres (Fig. 1). In the figure the index “O”
denotes principal localization centre, the index “x” de-
notes additional localization centres; the arrow indic-
ates the moving direction. The more powerful prin-
cipal heat source heats the plate until given technolo-
gical heating temperature is achieved. The less power-
ful additional heat sources slow down the cooling, as-
suring decreased martensite content on cooling.
We propose the method of thermal heating of a

plate optimized by certain criterion. The constraints
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Fig. 1. Schematics of the moving heat source having three
localization centres; arrow (→) – the moving direction of

the system.
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on the method usage are found (for above model of
heating sources).
The temperature distribution in the plate is de-

termined by 2D heat conduction equation for thin
plates [11]:

cρ

(
∂ T

∂τ

)
=

∂

∂xj

(
λ

∂ T

∂ xj

)
− α∗(T − tc) + Q̄,

(
j = 1, 2

)
(11)

at the following boundary

∂T/∂x1 = 0 for x1 → ±∞,

∂T/∂x2 = 0 for x2 → ±∞ (12)

and initial conditions

T (x1, x2, τ) = t0 for τ = 0. (13)

Here T = 1/2h
h/2∫

−h/2

t dx3 is the temperature averaged

over plate thickness, τ is the time, x1, x2 are coordin-
ates of the middle plate surface, x3 is the coordinate
normal to the plate surface, λ is the thermal conduct-
ivity coefficient, c is the specific heat, ρ is the density,
tc is the ambient temperature, t0 is the initial plate
temperature, α∗ = 2α/h, where α is the heat exchange
coefficient, Q̄ is the heat source power per unit thick-
ness, Q̄ = Q0 + Q, where Q0 is the source of hidden
power, Q is the heat source power.
The heat source Q̄ consists of two parts of differ-

ent nature. Q0 counts for heat absorption (generation)
during phase transformations. Q is the external heat
source the parameters of which (location, power, etc.)
are determined by the heating objective. Q0 and Q are
time and coordinates dependent. The source Q is cap-
able to heat the body up to temperature 200–1000◦C.
Heat sources due to polymorphic transformations are
known to be able to cause the temperature change up
to 30◦C [12]. Therefore, in modelling real technologies
of phase content formation the condition Q̄ ∼ Q can
be accepted.
The temperature dependence of the heat exchange

coefficient α is taken into account, which allows to con-
sider all possible heat exchange conditions, including
thermal radiation exchange. Hidden power of phase
transition is counted for by introducing additional
heat source.
The heat produced by moving heat sources is de-

termined by the following expressions:

Q = (Q∗
1/2πhσ)exp

(
(x22 − (x1 − x∗

1)
2)/2σ

)
+

+(Q∗
2/2πhσ)exp

(
((x2 − x∗

2)
2 − (x1 − x∗

1)
2)/2σ

)
+

+(Q∗
2/2πhσ)exp

(
((x2 + x∗

2)
2 − (x1 − x∗

1)
2)/2σ

)
,(14)

where x1 = vτ, x∗
1 = vτ − L, x∗

2 = x2 + L1/2, σ
is the scattering parameter, v is the speed of moving
sources. Heat flow from each heat source is assumed
to have Gauss distribution. Q∗

1 and Q∗
2 are the powers

of principal and additional heat sources.
The problem of phase content calculation was

solved by the finite element method using weighted
residuals method.
Using solutions of the heat conduction equation

and steel phase content kinetics equations, the phase
content spatial distribution in the plate subject to
moving heat sources is calculated. The position and
power of heat sources are found assuring minimal
martensite content in the plate.

4. Numerical results

Parametric optimization, that is, the selection of
heat sources parameters (powers of heat sources Q∗

1
and Q∗

2, their locations) and heating conditions (heat
exchange coefficient, ambient temperature), is used for
the choice of local heating regime optimum in terms of
the phase content. Optimization of the phase content
is carried out by a criterion of minimum of maximal
martensite phase content in the area of local heating.
Temperature field isotherms and phase content dis-

tributions in the plate atQ∗
1 = 800 kWm

−1, v = 0.002
m s−1 and the values of geometric parameters L1 =
0.005 m and L = 0.020–0.025 m, σ = 3× 10−5 m2 are
shown in Figs. 2, 3. Isotherms 1, 2 and 3 correspond to
temperatures 500◦C, 723◦C and 850◦C, respectively,
while numbers 4, 5 and 6 correspond to martensite,
bainite and ferrito-perlite phase contents. Conditions

of gradual cooling (
∂T

∂τ
< 0) for each point of the plate

are observed. One can check by the isotherms shape
if these conditions are observed – at certain distance
from the line of the principal heat source movement
the points exist which meet the same isotherm twice
during cooling (Fig. 4).
If additional heat sources are excessively power-

ful the cooling of the plate becomes non-gradual thus
making the above approach not applicable. In this case
the cooling takes more time due to temperature rise
after initial short time drop of the temperature of the
plate. Under these conditions the isotherms are char-
acterized by variable curvature (Fig. 4).
Table 1 presents the calculated values of the max-

imum martensite phase content in the heating area
dependent on geometric parameters L and L1 as well
as the power of additional sources Q∗

2. The value L =
0.025 m was found to assure optimum martensite con-
tent. Table 2 contains the maximum martensite and
bainite contents in the steel at the constant value L =
0.025 m and variable values L1 and Q∗

2.
It was found that the minimum martensite phase
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Fig. 2. The isotherms (1, 2, 3) and phase distributions (4, 5, 6) in the plate at L = 0.020 m and L1 = 0.005 m and different
power Q∗

2: (a, d) Q∗
2 = 40 kW m

−1; (b, e) Q∗
2 = 80 kW m

−1; (c, f) Q∗
2 = 120 kW m

−1; arrow (→) – the moving direction
of the system.
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Fig. 3. The isotherms (1, 2, 3) and phase distributions (4, 5, 6) in the plate at L = 0.025 m and L1= 0.005 m and different
power Q∗

2: (a, d) Q∗
2 = 40 kW m

−1; (b, e) Q∗
2 = 100 kW m

−1; (c, f) Q∗
2 = 160 kW m

−1; arrow (→) – the moving direction
of the system.

Ta b l e 1. The maximum martensite and bainite contents at L1 = 0.005 m, v = 0.002 m s−1, Q∗
1 = 800 kW m

−1 and
different values of Q∗

2 and L

L = 0.020 m L = 0.025 m L = 0.030 m
Q∗
2 (kW m

−1)
Mmax Bmax Mmax Bmax Mmax Bmax

40 77.9 21.7 71.9 27.6 81.1 18.7
60 74.9 24.7 61.4 37.3 75.5 24.1
80 74.2 25.3 50.0 48.5 71.6 27.9
100 76.7 22.9 46.0 52.0 – –
120 79.4 20.3 41.7 56.0 – –
140 81.6 18.1 39.0 58.4 – –
160 83.4 16.4 43.6 54.2 – –
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Ta b l e 2. The maximum martensite and bainite contents at L = 0.025 m, v = 0.002 m s−1, Q∗
1 = 800 kW m

−1 and
different values of L1 and Q∗

2

Q∗
2\L1 0.005 m 0.006 m 0.007 m 0.008 m 0.009 m

40 kW m−1 Mmax 71.9 73.2 73.9 76.1 78.2
Bmax 27.6 26.3 25.6 23.5 21.4

60 kW m−1 Mmax 61.4 62.5 64.8 68.1 71.9
Bmax 37.3 36.6 34.4 31.3 27.6

80 kW m−1 Mmax 50.0 50.0 55.2 59.1 65.2
Bmax 48.5 48.6 43.5 39.9 34.1

100 kW m−1 Mmax 46.0 50.0 50.0 50.0 57.1
Bmax 52.0 48.1 48.3 48.5 41.7

120 kW m−1 Mmax 41.7 41.7 43.3 45.2 50.0
Bmax 56.0 56.0 54.6 52.8 48.4

140 kW m−1 Mmax 39.0 38.6 38.6 40.9 45.6
Bmax 58.4 58.7 58.7 56.7 52.4

160 kW m−1 Mmax 43.6 37.1 35.6 36.7 40.1
Bmax 54.2 60.1 61.4 60.4 57.4
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Fig. 4. The isotherms in the plate at Q∗
2 = 120 kW m

−1;
L = 0.030 m and L1= 0.005 m when the proposed model
is not applied for calculation of the phase content; arrow

(→) – the moving direction of the system.

content (Mmax = 35.6 %, Bmax = 61.4 %) in the area of
local heating is obtained for the following values of the
power and geometric parameter: Q∗

1 = 800 kW m
−1,

Q∗
2 = 160 kW m−1, L = 0.025 m, L1 = 0.007 m
(Table 2).
The calculated values of the phase content might

be useful for determination of residual structural
stresses. The case of general cooling of a steel bar of
squared cross section was studied in [13].

5. Conclusions

Calculations have been carried out using numerical
parameters, values of which are close to those cur-
rently used at existing underwater welding technolo-
gies [14]. It was shown that the phase content of the

heated area of steel can be considerably influenced by
the selection of geometric parameters and the power
of moving circular heat sources. The martensite phase
content can be reduced twice compared to the case
of using heating set not involving additional sources
(in Tables 1, 2). In doing so, the temperature in the
centre of heating area remains the same. The gradient
of non-equilibrium phase distributions in the heating
area can also be considerably reduced thus assuring
decreased stresses concentration.
The proposed method can be applied for develop-

ment optimum, in terms of the phase content as well
as other parameters, global and local heating-cooling
of low alloy steel products and for calculation of struc-
tural stresses.
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