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Abstract

AX41 magnesium alloy (4Al-1Ca-balance Mg in wt.%) reinforced with short α-Al2O3 fibres

(Saffil�) has been deformed in compression at temperatures between 23 and 300◦C. The yield
stress and the maximum stress decrease with increasing testing temperature. The influence of
reinforcement on both characteristic stresses falls down with increasing temperature. Possible
hardening and softening mechanisms are discussed. Stress relaxation tests were performed in
order to reveal features of the thermally activated dislocation motion. Internal and effective
components of the applied stress have been estimated. The apparent activation volume de-
creases with increasing effective stress. The values of the activation volume as well as the
activation enthalpy indicate that the main thermally activated process is connected with the
rapid decrease of the internal stress with deformation temperature.

K e y w o r d s: magnesium alloy based composite, compression deformation, stress relaxation
test, thermally activated processes

1. Introduction

Interest in an increase of the strength (and creep
resistance) of lightweight metallic materials has grown
significantly over the last decade. Magnesium, alu-
minium and titanium alloys are very attractive for
various structural applications. The influences of dif-
ferent processing techniques, composition, heat treat-
ment and grain size on the mechanical properties and
deformation behaviour have been investigated [1–9].
Investigations have extended beyond these alloys to
an interesting group of TiAl-based intermetallic alloys,
e.g. [10–13] and composites with Mg alloys matrix [14–
17], Al alloys matrix [18, 19] and alloys reinforced with
nanoparticles [20]. In recent years metal matrix com-
posites (MMCs) have attracted worldwide attention as
a result of their potential to replace their monolithic
counterparts primarily in automotive, aerospace and
energy generation sectors. Adding the reinforcement
to the matrix has advantages and also disadvantages.
Among advantages an increase of elastic modulus E,
the yield stress as well as the strength, creep resist-
ance, damping and wear resistance, and a decrease
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of the thermal expansion coefficient are the most im-
portant. On the other hand, composites exhibit low
ductility and they are produced by more complicated
and expensive techniques.
It is generally accepted that during deformation of

a composite, deformation process occurs in the matrix
and short ceramic fibres deform only elastically. An
increase in the flow stress in the composite is caused
mainly by the following four reasons:
– Load transfer from the matrix to fibres;
– Direct impact of fibres as impenetrable obstacles

for the dislocation motion;
– Influence of fibres on the development of the dis-

location substructure in the matrix;
– Influence of fibres on the microstructure forma-

tion.
While the intrinsic mechanical and physical prop-

erties of the reinforcement (stiffness, strength and
thermal expansion) are dictated by its chemical
nature, the geometric and topological parameters of
the reinforcement (shape, size, volume fraction, spa-
tial orientation, and distribution) can be altered dur-
ing processing.
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The applied stress σ necessary for deformation of
any polycrystalline material can be divided into two
components: the internal (athermal) stress σi and the
effective stress σ*, i.e. one can write:

σ = σi + σ
∗. (1)

In a composite the athermal component includes the
stress, which is necessary for deformation due to the
load transfer σLT, and σDi the stress necessary for gen-
eration of dislocations, their movement and storage.
The flow stress σLT necessary for composite deform-
ation due to the load transfer can be calculated as
[21]:

σLT = σm

[
1 +
(L+ dt)A
4L

]
f + σm (1− f) , (2)

where σm is the yield stress in the matrix, f is the
volume fraction of fibres, L is the fibre size in the dir-
ection of the applied stress, dt is the fibre size in the
perpendicular direction and A is the fibre aspect ratio
(L/dt). The model is based on the simplifying assump-
tion of uniform matrix deformation and therefore, it
yields a very simplified expression for stiffness and
strength contribution. The internal stress σDi resulting
from long-range internal stresses impeding the plastic
flow is done as:

σDi = α1Gbρ
1/2
t , (3)

whereG is the shear modulus, α1 is a constant describ-
ing interaction between dislocations, b is the Burgers
vector of dislocations and ρt is the total dislocation
density. The effective shear stress σ∗ acts on disloca-
tions during their thermally activated motion when
they overcome short range obstacles. The mean ve-
locity of dislocations v is connected with the plastic
strain rate by the Orowan equation:

ε̇ = (1/ψ)ρm b v, (4)

where ρm is the density of mobile dislocations and ψ is
Taylor orientation factor. The most common equation
used in describing the average dislocation velocity as
a function of the effective stress is an Arrhenius type.
The plastic strain rate ε̇ for a single thermally activ-
ated process can be expressed as:

ε̇ = ε̇0 exp [−∆G (σ∗) /kT ] , (5)

where ε̇0 is a pre-exponential factor containing the
mobile dislocation density, the average area covered
by the dislocations in every activation act, the Bur-
gers vector, the vibration frequency of the dislocation
line, and the geometric factor. T is the absolute tem-
perature and k is the Boltzmann constant. ∆G(σ∗) is

the change in the Gibbs free enthalpy depending on
the effective stress σ∗ = σ − σi and the simplest form
is

∆G(σ∗) = ∆G0 − V σ∗ = ∆G0 − V (σ − σi). (6)

Here ∆G0 is the Gibbs free enthalpy necessary for
overcoming a short range obstacle without the stress
and V = bdLc is the activation volume, where d is the
obstacle width and Lc is the mean length of dislocation
segments between obstacles.
The stress relaxation technique is very useful

method to study the thermally activated processes
and to reveal the dominant process occurring during
plastic deformation. In a stress relaxation (SR) test,
the specimen is deformed to a certain stress σ0 and
then the machine is stopped and the stress is allowed
to relax. The stress decreases with the time t. The spe-
cimen can be again reloaded to a higher stress (load)
and the SR test may be repeated. The time derivat-
ive σ̇ = dσ/dt is the stress relaxation rate and σ =
σ(t) is the flow stress at time t during the SR. The
stress relaxation tests are very often analysed under
the assumption that the SR rate is proportional to the
strain rate ε̇, according to [22], as:

ε̇ = −σ̇/M, (7)

where M is the combined modulus of the specimen –
machine set. The stress decrease with the time during
the SR can be described by the well known Feltham
equation [23]:

∆σ(t) = σ(0)− σ(t) = α ln(βt+ 1), (8)

where σ(0) ≡ σ0 is the stress at the beginning of the
stress relaxation at time t = 0, β is a constant,

α =
kT

V
. (9)

The aim of this work is to study strengthening and
thermally activated processes occurring during plastic
deformation of an AX41 magnesium alloy reinforced
with short ceramic fibres.

2. Experimental procedure

Commercial AX41 alloy (Mg-4wt.%Al-1wt.%Ca)
was used as the matrix alloy. The alloy was reinforced
with δ-Al2O3 short fibres (Saffil�) with a mean dia-
meter of 3 µm and a mean length about 87 µm (meas-
ured after squeeze casting). The preform consisting of
Al2O3 short fibres showing a planar isotropic fibre dis-
tribution and a binder system (containing Al2O3 and
starch) was preheated to a temperature higher than
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Fig. 1. Microstructure of the undeformed sample; the sur-
face plane perpendicular to the stress axis.

the melt temperature of the alloy and then inserted
into a preheated die (290 to 360◦C). The two-stage
application of the pressure resulted in the metal mat-
rix composite with a fibre volume fraction of 13 vol.%
of fibres.
Samples for compression tests, machined from a

composite block, had a square cross-section of 5 mm
× 5 mm and a length of 10 mm. Samples were de-
formed in an Instron 1186 testing machine at a con-
stant crosshead speed giving an initial strain rate of
8.3 × 10−5 s−1 over the temperature range from room
temperature up to 300◦C. The temperature in the fur-
nace was kept with an accuracy of ±1◦C. Sequential
stress relaxation tests were performed at increasing
stress along a stress-strain curve. Duration of the SR
was 300 s. Ductility of the alloy at room temperature
is very low and therefore the SR tests were performed
at elevated temperatures. On the other hand, recov-
ery during the SR test was observed at 300◦C and
hence, the results obtained at this temperature were
not taken into account because the above given equa-
tions describing the SR were derived under an assump-
tion that the internal stress σi is constant during the
SR. Only in the first SR test at 300◦C, recovery may
be considered to be negligible, i.e. σi is constant.
Components of the applied stress (σi, σ∗) were es-

timated using Li’s method [24, 25]. The SR curves
were fitted to the power law function in the form:

σ−σi = [a (m− 1)] 1
1−m (t+ t0)

1
1−m , where a, t0 and m

are fitting parameters. Sections of composite castings
were polished and the microstructure was examined
using the Olympus light microscope.

3. Experimental results

A typical feature of the AX41 alloy consists from
solid solution of Al in Mg, α-Mg grains decorated by

Fig. 2. Stress-strain curves obtained at various tempera-
tures.
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Fig. 3. Temperature dependences of the yield stress and
the maximum stress.

particles. SEM showed Mg17Al12 intermetallic phase
surrounded with smaller particles of Al2Ca. The mi-
crostructure of the composite is more complicated as
it can be seen in Fig. 1; the micrograph was taken from
the section perpendicular to the fibre planes. It is ob-
vious that the planar random distribution of fibres is
not perfect. The stress-strain curves obtained at vari-
ous temperatures are introduced in Fig. 2. The tem-
perature dependence of the yield stress as well as the
maximum stress is given in Fig. 3. While the yield
stress slowly decreases with temperature up to 200◦C,
the decrease at higher temperatures is stronger. The
maximum stress decreases with increasing tempera-
ture at temperatures higher than 50◦C. The differ-
ences between the yield stress and the maximum stress
indicate that some work hardening exists at all the
temperatures studied. An example of the stress relax-
ation curve obtained at 200◦C is shown in Fig. 4. The
applied stress σ decreases during the stress relaxation
test. When the internal dislocation stress and mobile
dislocation density are constant the stress decrease is
due to a decrease of the effective stress σ∗. In the
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Fig. 4. Stress relaxation curve measured at 200◦C. Com-
ponents of the applied stress are indicated.

composite sample, the decrease of the effective stress
in the matrix causes a decrease in the load transfer
component. It is demonstrated in Fig. 4, where stress
component due to load transfer σLT has been calcu-
lated using relationship (2).

4. Discussion

4.1. F i b r e s t r e n g t h e n i n g

Reinforcing impact of Saffil short fibres on the yield
stress at various temperatures is introduced in Fig. 5.
It can be seen that the strengthening effect of fibres at
the very beginning of plastic deformation at room tem-
perature exhibits about 100 MPa and decreases with
increasing temperature to about 70 MPa at 300◦C.
The influence of the reinforcing fibres on the max-
imum stress is weaker in comparison with the yield
stress, it exhibits at room temperature about 90 MPa
and at 300◦C only 25 MPa.
Trojanová et al. [26] analysed various strengthen-

ing mechanisms in Mg alloys reinforced by short Saffil
fibres. The most significant contributions were found
to be the load transfer from the matrix to the fibres
and the influence of the increased dislocation density
arising from internal thermal stresses. Other possible
mechanisms do not influence any level of deformation
stresses by a significant manner. In the literature sev-
eral theoretical models were developed to explain the
strengthening in composites [27–30]. As it follows from
Eq. (1), the load transfer is more effective for higher
values of the fibre aspect ratio A, i.e. longer fibres;
however, on the other hand, the anisotropy of such a
composite is higher.
The internal stress increases due to dislocation

storage in the matrix, σDi ∝ ρ
1/2
t , because the total

dislocation density ρt increases due to two reasons: (a)
generation of thermal dislocations and (b) the pres-
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Fig. 5. Comparison of the temperature dependence of the
yield stress measured for composite and monolithic alloy.

ence of dislocations geometrically necessary. Typically,
the coefficient of thermal expansion (CTE) of the mat-
rix is higher than CTE of a ceramic reinforcement.
When the metal matrix composite is cooled from
a higher temperature to room temperature, misfit
strains occur because of different thermal contractions
at the matrix-reinforcement interface. These strains
induce thermal stresses that may be higher than the
yield stress of the matrix. The thermal stresses may be
sufficient to generate new dislocations at the interfaces
between the matrix and the reinforcements. There-
fore, after cooling a composite, the dislocation density
in the matrix increases. The density of newly formed
dislocation, near reinforcement fibres or particles can
be calculated as [27]:

ρT =
Bf∆α∆T
b (1− f)

1
tm
, (10)

where tm is a minimum size of the reinforcing phase
particles or fibres, b is the magnitude of the Burgers
vector of the newly created dislocations, B is a geo-
metrical constant (B = 10 for fibres and B = 12 for
particles), ∆α∆T is the thermal strain (∆α is the dif-
ference in the coefficients of thermal expansion and
∆T is the temperature change). When the thermal
stresses achieve the yield stress, plastic zones can be
formed in the matrix near the interfaces, especially, in
the vicinity of fibre ends.
With addition of the reinforcing phase, the geo-

metrically necessary dislocations are generated to ac-
commodate the mismatch of plastic deformation in
the matrix. The density of the geometrically neces-
sary dislocations may be expressed as [28]:

ρG =
f8εp
btm

, (11)

where εp is the plastic strain. The influence of the
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Ta b l e 1. The most important strengthening mechanisms in composites

Mechanism

Load transfer σLT = σm

[
1 +
(L+ dt)A
4L

]
f + σm (1− f)

L – fibre length, dt – fibre thickness, A =
(L/dt), f – volume fraction, σm –matrix
stress

Thermal dislocations ρT =
Bf∆α∆T
b(1− f)

1
tm

b – Burgers vector, B = 10 for fibres and
B = 12 for particles, ∆α∆T – thermal
strain

Dislocation geometrically
necessary

ρG =
f8εp
btm

εp – plastic strain

Enhanced dislocation
density

∆σD = α1ψGb (ρT + ρG)
1/2 α1 – constant, ψ – Taylor factor, G –

shear modulus

Orowan strengthening ∆σOR =
Gb

Λ
+
5
2π
Gfεp Λ – distance between fibres

Grain size refinement ∆σGS = Ky
(
d
−1/2
2 − d

−1/2
1

)
Ky – constant, d1, d2 – grain size

Average residual stress in
matrix

〈σm〉max =
2
3
σy ln

(
1
f

)
f

1− f
σy – yield stress in matrix

geometrically necessary dislocations increases with in-
creasing strain.
Introducing the reinforcing phases into the metal

matrix influences not only the densities of the thermal-
ly formed and geometrically necessary dislocations,
but also the dislocations stored at reinforcements dur-
ing deformation. Considering these effects, the total
dislocation density in composites can be written:

ρtotal = ρT + ρG + (ρS + ρa), (12)

where ρS is the statistically stored dislocation density
in unreinforced matrix, ρa is the diminished part of the
statistically stored dislocations due to the addition of
a reinforcing phase. The strengthening in the matrix
is attributed to the deformation resistance induced by
the reinforcing phase. According to Taylor relation,
the contribution to the total stress due to the presence
of dislocations in the matrix may be written:

∆σD = α1ψGb (ρT + ρG + ρS + ρa)
1/2

. (13)

This higher matrix dislocation density as well as the
reinforcement/matrix interfaces can provide high dif-
fusivity paths in a composite. Such possibility may
play an important role in the softening processes.
Among other possible strengthening mechanisms

the Orowan strengthening [29], grain refinement and
residual thermal stresses may be considered [30]. A
brief summary of the strengthening mechanisms in

composites is given in Table 1. The models, and also
the experimental behaviour, show that a composite
strengthening depends on the geometrical parameters
of reinforcements (size and shape of fibres or particles,
volume fraction of the reinforcement, interparticle dis-
tance), on the physical properties of the compon-
ents (thermal expansion coefficient, binding at the in-
terface matrix-reinforcement), on microstructure and
mechanical properties of the components. Individual
contributions to the strengthening, calculated using
constants introduced in Table 3, are summarised in
Table 2. From Table 2 it is obvious that the enhanced
dislocation density may significantly increase the com-
posite flow stress. The load transfer is also an im-
portant strengthening mechanism in the composites
reinforced by short fibres. Other strengthening mech-
anisms have a marginal importance for the composite
strength. Comparing the calculated value of the total
stress with the experimental one it follows that the
measured value is lower. This may be caused by two
reasons:
(i) The models used for calculations are construc-

ted for the perfect binding between the matrix alloy
and the Saffil fibres. Such binding depends on the
binder used in the perform (in this case starch with the
Al2O3 powder) and on the chemical reaction between
matrix and fibres.
(ii) There is, however, a question how to sum the

individual contributions. According to Lilholt [36] the
stress contributions, which act more or less uniformly
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Ta b l e 2. Contributions of various strengthening mechanisms to the yield stress of the composite at room temperature

σ02 alloy ∆σLT ∆ρT ∆ρG ∆σD ∆σOR ∆σGS <σm>max σtot σexp
(MPa) (MPa) (m−2) (m−2) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

68 36 1.78 × 1013 2.2 × 1012 51 2 15 13.8 185.8 168.3

Ta b l e 3. Constants used for calculation of contributions to the yield stress given in Table 2

α(AX41) α(Saffil) G Ky b Taylor factor ψ α1

(K−1) (K−1) (GPa) (MPa m−3/2) (m)

25 × 10−6 6 × 10−6 17 0.28 3.2 × 10−10 6 0.35
[31] [32] [33] [34] [35]

Fig. 6. A part of the true stress-true strain curve at 100◦C.
Points indicate the stresses at which the SR tests were

performed.

throughout the matrix, must be superimposed lin-
early, whereas mechanisms of similar strengthening
ability, which act unevenly throughout the matrix, are
most suitably combined as the square root of the sum
of the squares [37]. For the yield stress of the compos-
ite at room temperature, one obtains 185.8 MPa using
the linear superposition in comparison to 134 MPa for
a quadratic sum.

4.2. I n t e r n a l s t r e s s i n t h e m a t r i x

The stress components (σDi , σ
∗) were estimated

from the stress relaxation curves. A part of the stress-
-strain curve for specimens deformed at 100◦C is
shown in Fig. 6. Full circles depict points at the stress-
-strain curve where the stress relaxation tests were
performed. Blank circles indicate the matrix stress and
full and blank triangles designate the internal stress
σDi and the effective stress σ

∗, respectively. It is obvi-
ous that the internal stress σDi is a substantial con-
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Fig. 7. A part of the true stress-true strain curve at 200◦C.
Points indicate the stresses at which the SR tests were

performed.

tribution to the matrix stress σm. A similar analysis
was performed at 200◦C and introduced in Fig. 7. As
it follows from Fig. 7 the internal stress increases with
strain only in the very beginning of deformation; for
strains higher than about 2 %, it decreases with strain
while the effective stress increases continuously up to
a true strain of 8 %. For higher strains, the effective
stress remains constant, while the applied stress is de-
creasing. Comparison of the internal stress estimated
for the AX41 alloy and that for the composite with the
AX41 matrix reinforced with the 13 % of Saffil fibres
is introduced in Fig. 8. Subtracting the value of the
load transfer ∆σLT, it can be seen that the internal
stress level in the composite is higher in comparison
with the unreinforced alloy. The difference exhibit-
ing 64.5 MPa is due to a higher dislocation density
of thermal dislocations (ρT = 1.78 × 1013 m−2) and
dislocations geometrically necessary (ρG = 1.4 × 1013
m−2). Corresponding stress ∆σρ = αψGb(∆ρ)1/2 =
64.4 MPa.
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Fig. 8. Comparison of the dislocation internal stress estim-
ated at 100◦C and at a strain of 0.013 for the composite

and the monolithic alloy.

4.3. T h e r m a l a c t i v a t i o n

The values of the activation volume Vapp were es-
timated according (8) and (9) using stress decrease in
the matrix (σm = σapp −∆σLT). As usual, the values
of the activation volume are divided by b3. The values
for samples deformed at 100◦C are plotted against the
matrix stress σm in Fig. 9. For comparison, the values
of the activation volume (divided by b3) estimated for
unreinforced alloy at temperature of 100◦C are also in-
troduced. If the same values of the activation volume
are plotted against the effective stress σ∗, all data
lie on one line – “master curve” (Fig. 10). Kocks et
al. [38] suggested an empirical equation between the
Gibbs enthalpy ∆G and the effective stress σ∗ in the
following form:

∆G = ∆G0

[
1−

(
σ∗

σ∗
0

)p]q

, (14)

where ∆G0 and σ∗
0 are Gibbs enthalpy and the effect-

ive stress at 0 K. For the effective stress it follows:

σ∗ = σ∗
0

[
1−

(
kT

∆G0
ln
ε̇0
ε̇

)1/q
]1/p

, (15)

where p and q are phenomenological parameters re-
flecting the shape of a resistance obstacle profile. The
possible ranges of values p and q are limited by the
conditions 0 < p ≤ 1 and 1 ≤ q ≤ 2. Ono [39] sugges-
ted that Eq. (14) with p = 1/2, q = 3/2 describes a
barrier shape profile that fits many predicted barrier
shapes. Thermodynamics generally defines the activ-
ation volume as:

V = −
(
d∆G
dσ∗

)
T

= kT

(
d lnε̇
dσ∗

)
T

= kT

(
d ln(−σ̇)
dσ∗

)
T

.

(16)
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Fig. 9. Activation volume in b3 depending on the stress in
the matrix estimated for the composite and the monolithic
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Fig. 10. The plot of the activation volume in b3 against the
effective stress estimated at 100◦C for the composite and

the monolithic alloy.

Equation (16) can be rewritten as:

V =
∆G0pq
σ∗
0

[
1−

(
σ∗

σ∗
0

)p]q−1(
σ∗

σ∗
0

)p−1
. (17)

The values of the activation volume lie at the curve
given by Eq. (16), as it is obvious from Fig. 11.
The activation enthalpy ∆H = ∆G− T∆S (∆S is

the entropy) is done by

∆H = −TV dσ
dT

. (18)

The differential coefficient dσ/dT was estimated to be
0.159 MPa K−1 from the temperature dependence of
the yield stress in the temperature range from 100
to 200◦C. The activation enthalpy calculated accord-
ing to (17) for 200◦C gives (0.95 ± 0.05) eV. Similar
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Fig. 11. The plot of the activation volume in b3 against
the effective stress estimated at two temperatures for the

composite.

value of 0.96 eV has been reported for AX41 alloy
[40] and Mg in creep experiments at 400 K [41]. A
rapid decrease of the flow stress at elevated tempe-
ratures indicates the possible occurrence of recovery
process(-es) that is usually thermally activated. The
values of the activation volume and the activation en-
thalpy may help to identify this thermally activated
process. The thermally activated processes occurring
in the AX41 alloy during plastic deformation at tem-
peratures higher than ambient temperature have been
studied using stress relaxation tests in our previous
paper [40]. The activation of the prismatic slip and
subsequent annihilation of the dislocation segments
with the opposite sign have been found as the main
reason for the observed internal stress decrease. The
double cross slip and the thermally activated glide of
the 〈c+ a〉 dislocations in pyramidal planes should be
taken into account. Because the values of the activ-
ation volume and activation energy are very similar
to those estimated for monolithic AX41 alloy, we can
conclude that the thermally activated processes are
the same.

5. Conclusions

The main results of the complex analysis of the
deformation mechanisms in the AX41 alloy reinforced
with 13 vol.% of short Saffil fibres:
– the main contribution to the composite strength-

ening originates from the increased dislocation dens-
ity;
– the load transfer from the matrix to the reinfor-

cing phase fibres is also important contribution;
– the internal stress estimated from the stress re-

laxation tests decreases with increasing deformation
temperature;
– the values of the apparent activation volumes are

in the order of 101–102 b3;

– estimated values of the activation energy are the
same as estimated for the monolithic alloy;
– the estimated parameters of the thermally ac-

tivated deformation showed that the main thermally
activated process is very probably the glide of dislo-
cations in the non-compact planes.
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