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Abstract

This paper presents the application of artificial neural network (ANN) in the foundry
process. Two-layer feedforward neural network which is trained using backpropagation al-
gorithm that updates weights and biases values according to gradient descent momentum and
an adaptive learning rate (Backpropagation Neural Network – BPNN) has been established to
predict the as-cast impact toughness of spheroidal graphite cast iron (SGI) using the thermal
analysis (TA) parameters as inputs. Generalization property of the developed ANN is very
good, which is confirmed by a very good accordance between the predicted and the targeted
values of as-cast impact toughness on a new data set that was not included in the training
data set.

K e y w o r d s: spheroidal graphite cast iron, impact toughness, artificial neural networks,
thermal analysis

1. Introduction

Spheroidal graphite cast iron (SGI), also known as
ductile cast iron and nodular cast iron, is a kind of
cast iron whose most important microstructural fea-
ture is the presence of graphite nodules in the metal
matrix. It is a specific engineering material, which pos-
sesses good mechanical properties, castability, machin-
ability, and particularly important, it has low produc-
tion costs. Due to favorable combination of mechanical
properties (high tensile strength and good ductility),
SGI is used in many applications, such as pipes, vari-
ous automotive parts etc.
The mechanical properties of SGI are determined

by the chemical composition, microstructural proper-
ties and conditions during the solidification and the
afterwards cooling [1–8]. The microstructure of SGI
is determined in part during the solidification and in
part during the following eutectoid (solid state) trans-
formation. The shape of graphite is established during
the solidification and it cannot be changed afterwards.
In the as-cast condition, the typical metal matrix of
SGI consists of ferrite and pearlite.
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The most important factors which influence the
impact toughness of SGI are: chemical composition,
the shape and distribution of graphite, nodule count,
the cooling rate during the solidification, the cooling
rate through the eutectoid transformation range (solid
state transformations) and the presence of other mi-
crostructural constituents (for example: carbides, iron
phosphide etc.).
Chemical composition is one of the most significant

factors in determining the metal matrix structure [1,
4–6]. The impact toughness of SGI depends strongly
on the ferrite contents in the metal matrix. The SGI
with ferritic metal matrix has lower tensile strength,
but higher impact toughness and elongation. Si is a
ferrite promoter, while elements such as Cu, Sn, Sb,
Mn, Cr etc. are pearlite promoters. With the goal of
producing as-cast ferritic SGI, the contents of pearl-
ite promoters and carbides promoters (Cr, Mn, etc.)
should be kept as low as possible. P is a very harmful
element because it has a strong embrittling effect and
should be kept as low as possible.
Graphite nodularity has a significant influence on

the impact toughness of SGI. Low graphite nodular-

mailto:glavaszo@siscia.simet.hr


42 Z. Glavaš et al. / Kovove Mater. 45 2007 41–49

ity and the presence of non-spheroidal graphite forms
result in low values of the impact toughness. Nod-
ule count affects the ferrite/pearlite ratio. As nodule
count increases, the diffusional paths of carbon in the
eutectoid transformation range decrease, which results
in higher ferrite volume fraction in the microstructure
for the same chemical composition and cooling condi-
tions [2, 5, 7, 8]. Inoculation has an important influ-
ence on graphite nodularity and nodule count. Proper
inoculation will improve the nucleation state of the
melt, which results in higher nodule count and graph-
ite nodularity.
The effects of the cooling rate on the microstruc-

ture and the impact toughness of SGI are quite com-
plex, since they affect both graphite morphology and
the ferrite/pearlite ratio. Higher cooling rates during
the solidification will increase graphite nodule count
and graphite nodularity. However, higher cooling rates
in the eutectoid transformations range result in higher
volume fraction of pearlite in the microstructure [2, 5,
7, 8].
It is obvious that there is a large number of factors

which influence the as-cast impact toughness of SGI.
The chemical composition of the cast iron melt does
not give the insight into the quality and the predis-
position of the base melt in order to obtain sound
castings of the required microstructural and mechani-
cal properties (for example as-cast impact toughness).
The melt control method, which gives the insight into
the metallurgical state of the melt, is thermal ana-
lysis (TA). Thermal analysis is a simple, quick and
reliable method for the estimation of melt quality and
observation of solidification process of cast irons. In
the foundries, thermal analysis is performed by re-
cording of cooling curves. The cooling curve is a plot
of the temperature as a function of time for a melt
sample poured into a standardized cup with thermo-
couple (Quik-cup�). The parameters, which are iden-
tified and measured by thermal analysis, could be ap-
plied in the estimation of influence of process para-
meters on solidification, i.e. for the estimation of me-
tallurgical state of the melt. Many attempts have been
made to correlate the data from the cooling curve with
the shape of graphite, microstructural and mechanical
properties in order to obtain a reliable system for melt
control [7–13]. In this paper thermal analysis is used
for the estimation of metallurgical state of the melt
and the observation of solidification process. The data
from the cooling curves are correlated with the as-cast
impact toughness of SGI.
The models for the prediction of cast iron prop-

erties based on multiple linear regression technique
could be applied, more or less successfully, only to spe-
cific process conditions under which they have arised.
Meanwhile, casting production process is a complic-
ated and nonlinear process, i.e. chemical composition,
metallurgical state of the melt and casting proper-

ties are not in linear relationship. In recent years,
rapid progress in artificial intelligence enables us to
use a new method for information processing – artifi-
cial neural networks (ANN) [14–17]. ANN are complex
systems composed of simple elements (artificial neur-
ons) operating in parallel. These elements (neurons),
inspired by biological nervous systems, are in a specific
interaction, mutually and with the environment of the
system (weights of artificial neural networks), so that
they build a functional unit. Two or more neurons
may be combined in a layer, and a particular network
might contain one or more layers (input layer, output
layer and some hidden layers). The number of inputs
to the network is designated by the problem, and the
number of neurons in the output layer is designated by
the number of outputs required by the problem. How-
ever, the designer has to define the number of layers
between the network input and the output layer and
the size of the layers (number of neurons).
The network function is determined by the connec-

tions between elements. We can train (learn) ANN to
perform a particular function by adjusting the val-
ues of the connections (weights) between elements.
Each input to neuron is weighted with an appropri-
ate weight. The sum of the weighted inputs and the
bias forms the input to the neuron transfer function.
It is the function that maps a neuron’s (or layer’s) net
output to its actual output. The most popular transfer
functions are linear, log sigmoid, hyperbolic tangent
sigmoid etc. The bias is much like the weight, except
that it has a constant input of 1.
Properly trained ANN are capable to map input

to output patterns with minimal error between the
modelled and the measured output values. Testing of
ANN follows after training. It is performed by a new
input data set, which is not included in the input data
set for training of ANN.
Currently, the most important and the most widely

used algorithm for neural network training (learning)
is backpropagation. This algorithm uses mean squared
error and gradient descent for training.
In this paper, Backpropagation neural network

(BPNN) was used to predict the as-cast impact tough-
ness of SGI using the TA parameters as inputs.

2. Experimental

In this paper, examinations were performed in
the commercial foundry in real industrial conditions.
The base melt for the production of SGI was pro-
duced in an acid-lined cupola furnace (diameter 800
mm, cold air, capacity 4–5 t/h). The charge mate-
rials consisted of special low-manganese pig iron, re-
turns scrap and steel scrap. The melt was trans-
ferred to the net-frequent induction furnace, capacity
4 t and power 1110 kW, where its temperature was
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Ta b l e 1. Average chemical composition (wt.%) of the SGI melts used in the experiments

C Si Mn P S Ni Cr
3.6–3.8 2.7–3.2 0.2–0.3 0.030–0.045 0.001–0.010 0.04–0.06 0.05–0.07

Cu Mo Ti Al Sn Mg
0.07–0.12 0.004–0.011 0.014–0.025 0.009–0.017 0.005–0.015 0.029–0.034

raised due to the homogenization and correction of
chemical composition. After that, the melt was de-
sulphurized in a 3 t ladle by the addition of CaC2
and strongly mixed with inert gas (nitrogen), which
was introduced through a porous plug located at the
ladle bottom. After desulphurization and removing
of slag the melt was poured into a channel-type in-
duction holding furnace (receptor), capacity 20 t and
power 800 kW. The nodularizing treatment of the base
melt was performed by Flotret or Osmose method
via FeSiMg5 alloy. After the treatment, the sample
of melt was taken for thermal analysis and the esti-
mation of chemical composition and a Y-block was
cast. Chemical composition of the tested SGI samples
was determined with a LECO GDS-400A spectro-
meter.
Thermal analysis was performed by the advanced

thermal analysis system ATAS� (Adaptive Thermal
Analysis System). A sample of the melt was poured
into a standardized mould with a thermocouple (Quik-
-cup�). The Y-block was cast in the mould, had been
produced by the Betaset process. The dimensions and
the form of the Y-block are specified according to the
EN 1563. Altogether, 139 melts have been made.
Standard test pieces with V-notch for the esti-

mation of as-cast impact toughness were machined
from Y-blocks. The dimensions and the form of the
test pieces are specified according to the EN 10045-1
(length of test piece is 55 mm; square section with 10
mm sides; V-notch of 45◦, 2 mm deep with a 0.25 mm
radius of curvature at the base notch). Test pieces have
always been taken from the same place in the Y-block.
Altogether, 267 standard test pieces have been made
and tested, i.e. 267 input/output pairs of data were
available for modelling by ANN.
The impact energy is measure of as-cast impact

toughness. The impact energy of SGI samples in as-
-cast condition was examined by the Charpy method
at 20◦C according to EN 10045-1. In this examination
a testing machine with maximum striking energy of
15 J was applied.
Metallographic examinations were performed after

Charpy impact test by a light metallographic micro-
scope with a digital camera and the image analysis
system (AnalySIS� Materials Research Lab).
The goal of these examinations was to establish a

neural network model for predicting of the as-cast im-
pact toughness of SGI using data from cooling curves
as inputs.

3. Results

3.1. C h em i c a l c o m p o s i t i o n

Average chemical composition of examined SGI
melts is given in Table 1.
Deviations from the chemical composition given in

Table 1 were present on few melts. High content of P
was present on melts number 52–55 (0.067–0.072 %)
and melts number 87–92 (0.085–0.11 %). In melts
number 43 and 69 high content of Cu (0.57 % and
0.40 %, respectively) was present, while on melts num-
ber 135 and 136 high content of Cr (0.26 % and 0.30 %,
respectively) was present. These melts of SGI have
achieved low values of as-cast impact toughness. The
mentioned elements have influence on equilibrium and
transformation temperatures, which was reflected on
the cooling curves. The analysis of the cooling curves
in the eutectoid range shows that high content of
Cu influences the decrease of eutectoid transforma-
tion temperature, while high content of P influences
the increase of eutectoid transformation temperature.

3.2. A NN a r c h i t e c t u r e

The selection of the input parameters is a very im-
portant step in ANN modelling. It is based on the
physical background of the process. It is very impor-
tant to select and include all relevant input paramet-
ers.
The input parameters for the ANN were thermal

parameters derived from the cooling curve in the eu-
tectic and the eutectoid range and thermal paramet-
ers derived from first derivative of the cooling curve
in the eutectic range. Only those thermal paramet-
ers, which have the most important influence on the
impact toughness of SGI, were selected as input para-
meters of the ANN. They are:
– ϑL – liquidus temperature (◦C),
– ϑElow – the lowest eutectic temperature or tem-

perature of eutectic undercooling (◦C),
– ϑR – recalescence (◦C),
– ϑS – solidus temperature (◦C),
– GRF1 (Graphite Factor 1) – a parameter that

is defined as the relative time for the temperature
to drop 15◦C from the highest eutectic temperature
ϑhigh,
– GRF2 (Graphite Factor 2) – a parameter that

is calculated from the cooling rate before and after
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Fig. 1. a) Schematic description of the cooling curve of the
SGI in the eutectic range with displayed TA parameters, b)
schematic description of the first derivative of the cooling
curve in the eutectic range with displayed TA parameters.

solidus. The angle of the first derivative at the solidus
temperature ϑS and the negative peak at the latest
segment of the first derivative are used to calculate
GRF2,

–
d
dt

ϑS – value of the first derivative at solidus tem-

perature or the depth of the first derivative (negative
peak) at solidus (◦C/s),
– ϑoidlow – low eutectoid temperature (◦C).
Figures 1a,b and 2 schematically show the selected

input parameters of the ANN on the cooling curve in
the eutectic range, on the first derivative of the cooling
curve in the eutectic range and on the cooling curve
in the eutectoid range, respectively.
The software used to create the ANN which pre-

dicts the as-cast impact toughness of SGI using the
selected TA parameters is Neural Network Toolbox of
MATLAB� 7.0.
The network generalization is good when a net-

work is able to perform as well on a test set as on a
training set. In this work the generalizability of the
network (prevention of overfitting) was performed by
the early stopping method. Experimental data set is
divided into three subsets: training set (50 % of the ex-

Fig. 2. Schematic description of the cooling curve of the
SGI in the eutectoid range with displayed TA parameter.

perimental data), validation set (25 % of experimental
data) and test set (25 % of experimental data). Train-
ing set is used for computing the gradient and up-
dating the network weights and biases. Training was
performed only on the training set. Validation set was
not included in training set and was used to decide
when to stop the training. The error on the valida-
tion set is monitored during the training process. The
validation error will normally decrease during the ini-
tial phase of training, as does the training set error.
However, when the network begins to overfit the data,
the error on the validation set will typically begin to
rise. When the validation error increases in a specified
number of iterations, the training is stopped, and the
weights and biases are returned at the minimum of
the validation error. The test set error was not used
during the training, but it was used for comparison of
different models. To produce the most efficient train-
ing, the input and output data are normalized before
training.
In this paper different network architectures were

examined to determine the network, which has a min-
imum generalization error. Optimum structure of net-
work (number of layers, number of neurons, transfer
functions, learning rate, momentum) was obtained us-
ing genetic algorithms (GA). When an optimum net-
work is found, the entire data was used to adjust the
weights and biases without changing the structure of
the network.
The best results were achieved by a multilayer

feedforward neural network which was trained us-
ing backpropagation algorithm that updates weights
and biases values according to gradient descent mo-
mentum and an adaptive learning rate (Backpropaga-
tion Neural Network – BPNN). The architecture and
parameters of the selected network (BPNN) are given
in Table 2.
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Ta b l e 2. Architecture and parameters of the selected neural network (BPNN)

Number of hidden layers 2
Number of neurons in the first hidden layer 10
Number of neurons in the second hidden layer 9
Number of neurons in the output layer 1
Transfer function of the first hidden layer Linear transfer function (‘purelin’)
Transfer function of the second hidden layer Hyperbolic tangent sigmoid transfer function (‘tansig’)
Transfer function of the output layer Linear transfer function (‘purelin’)
Learning rate 0.451055
Ratio to increase learning rate 1.05
Ratio to decrease learning rate 0.70
Maximum performance increase 1.04
Momentum 0.459628

Fig. 3. a) Performance of the BPNN on the training data set, b) performance of the BPNN on the validation data set, R
– coefficient correlation, A – predicted impact energy, T – target impact energy.

3.3. A n a l y s i s o f A NN p e r f o r m a n c e

The performance of a trained BPNN was meas-
ured by regression analysis between the network out-
puts and the corresponding target values, had been
obtained by measuring. Figures 3a,b show the per-
formance of the BPNN on the training and validation
data set.
The performance functions are important meas-

ures for the evaluation of network’s performance. In
this paper, the performance functions used for train-
ing BPNN are the Sum Square Error (SSE), the Mean
Square Error (MSE), the Root Mean Square Error
(RMSE) and the Normalized Root Mean Square Er-
ror (NRMSE). Values of the performance functions on
training and validation data set are given in Table 3.
Figures 3a,b show that BPNN very well represents

training and validation data set, which is confirmed
by high values of coefficient correlations between the

network outputs and the corresponding target values
obtained by measuring.
High correlation between the network outputs and

target values, obtained on training data set, is not a
guarantee that network is learned to generalize to new
situations.
Therefore, the performance of the BPNN on the

test data set was evaluated. The test data set was
not used during the training. The performance of the
BPNN on the test data set was also measured by re-
gression analysis between the network outputs and
the corresponding targets values had been obtained
by measuring as well as by the network’s performance
functions (SSE, MSE, RMSE, NRMSE) (Table 3).
Figure 4a shows a very good network generaliza-

tion, which is the indication of proper network archi-
tecture and proper selection of input network para-
meters. Figure 4b shows the performance of the BPNN
on the entire data set.
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Ta b l e 3. Values of performance functions on training, validation and test data set

Performance function
Data set

SSE MSE RMSE NRMSE

Training set 45.4009 0.3388 0.5821 0.3101
Validation set 19.8724 0.3011 0.5487 0.2685
Test set 29.5433 0.4409 0.6640 0.3628

Ta b l e 4. Comparison of target and predicted impact energy (as-cast impact toughness) of SGI (part of test data set)

Network inputs (TA parameters) Impact energy (J)

ϑL ϑElow ϑR ϑS GRF1 GRF2
d
dt

ϑS ϑoidlow Measured Predicted by BPNN

(◦C) (◦C) (◦C) (◦C) (◦C/s) (◦C)

1139.1 1139.2 4.9 1096.8 90 65 –2.71 734.9 6.0 6.09
1139.5 1139.5 8.5 1095.9 70 61 –2.91 733.9 6.2 7.10
1145.9 1146.0 2.8 1104.9 95 74 –2.59 733.4 5.9 5.87
1143.3 1143.3 5.9 1100.6 88 70 –2.73 733.7 6.5 6.23
1149.2 1149.2 2.8 1103.7 95 35 –3.50 735.9 11.2 11.15
1147.1 1147.1 2.5 1100.3 97 72 –2.68 739.6 6.0 6.20
1148.8 1148.8 4.0 1106.6 91 29 –3.62 737.9 14.0 14.20
1139.7 1139.8 6.7 1097.4 88 54 –3.02 736.2 7.2 7.18
1136.7 1136.6 4.9 1094.9 80 53 –3.02 733.5 7.0 7.41
1136.7 1136.7 5.7 1093.8 81 45 –3.23 736.0 8.8 8.42
1137.8 1137.8 3.6 1092.5 79 50 –3.00 738.9 7.0 6.98
1142.1 1142.1 1.0 1095.8 93 41 –3.38 737.8 10.5 10.41
1139.1 1139.5 6.2 1093.8 87 46 –3.30 746.0 3.6 5.41
1143.2 1143.2 3.9 1099.7 97 80 –2.45 745.3 3.8 3.70
1137.3 1137.5 8.2 1092.6 73 53 –3.15 739.7 7.5 7.38
1146.3 1146.3 6.2 1105.3 86 77 –2.56 739.2 5.4 6.03
1139.6 1139.6 7.9 1097.1 82 58 –2.88 736.6 6.6 7.09
1143.6 1143.6 2.4 1094.3 69 53 –2.99 730.5 2.7 3.87
1139.9 1139.9 2.3 1094.5 70 48 –3.10 733.8 7.1 7.17
1142.5 1142.5 1.7 1094.3 88 48 –3.14 736.3 7.5 7.36
1140.6 1140.5 7.1 1099.8 78 64 –2.80 734.4 6.5 5.92
1137.3 1137.5 8.1 1092.2 65 117 –2.18 746.7 2.8 2.81
1143.0 1143.0 0.7 1095.8 76 44 –3.22 741.3 7.3 7.97
1142.2 1142.2 9.4 1103.6 77 47 –3.14 733.5 3.0 5.92
1138.6 1138.6 6.6 1094.1 76 61 –2.84 741.7 6.2 6.11
1141.5 1141.5 7.1 1096.7 79 61 –2.89 743.5 6.5 5.48
1140.8 1140.8 6.5 1097.0 68 52 –2.98 739.1 7.1 6.76
1137.0 1137.0 5.1 1093.7 84 49 –3.08 740.2 7.3 7.17
1144.9 1145.0 2.5 1097.7 94 44 –3.19 740.9 8.5 8.14
1139.5 1139.5 4.9 1093.5 73 48 –3.15 735.5 7.4 7.40

A part of test data set (network inputs and the
corresponding target values obtained by measuring)
and network outputs are given in Table 4.

4. Discussion

The results of neural network modelling of as-cast
impact toughness of SGI based on the data from the
cooling curves show that the combination of thermal
analysis and neural networks is a powerful tool for

the estimation of melt quality, i.e. mechanical prop-
erties. A very high correlation coefficient between the
measured and the estimated values of impact energy,
i.e. as-cast impact toughness on test data set presents
successfulness of the model.
Thermal parameters, which were taken as input

variables for the neural network, are closely connected
with chemical composition and microstructure devel-
opment of SGI. In the succession of discussion there
will be considered the influence of the selected TA
parameters on the as-cast impact toughness of SGI.
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Fig. 4. a) Performance of the BPNN on the test data set,
b) performance of the BPNN on the entire data set, R –
coefficient correlation, A – predicted impact energy, T –

target impact energy.

The liquidus temperature ϑL (Fig. 1a) is related
to the carbon equivalent (CE), i.e. with C and Si con-
tents. Low values of liquidus temperature are primar-
ily the indication of high C contents. Combination of
high C contents, i.e. carbon equivalent and slow cool-
ing rates (thick sections) results in flotation and form-
ation of non-spheroidal graphite forms, which has a
negative influence on mechanical properties of SGI.
Increasing of C contents may result in increasing of
nodules count per unit volume and decreasing of the
average distance between them [18]. A too high nod-

ules count is not desirable since the graphite nodules
may act as voids under a tensile load condition. De-
creasing of average distance between graphite nodules
(high nodules count) may influence the connection of
the voids (graphite nodules) at an earlier stage of the
deformation of the metal matrix, which results in de-
creasing of impact toughness. Although it promotes
ferrite, very high Si contents are not favorable since Si
strengthens the ferrite, which has a negative influence
on the impact toughness of SGI [3, 19].
Liquidus temperature ϑL, the temperature of the

start of eutectic reaction ϑES and the lowest eutectic
temperature ϑElow of the examined melts are almost
the same temperatures, which indicates equal precipit-
ation of eutectic during the solidification, i.e. continu-
ous nucleation of graphite. Continuous nucleation of
graphite during the solidification results in high dens-
ity of graphite particles in the metal matrix. During
the eutectoid transformation, i.e. austenite decompos-
ition, high density of graphite particles (a higher num-
ber but not very high) acts on decreasing of diffusional
paths of C in the solid state, which results in increasing
of the fraction of ferrite in the microstructure. The in-
crease of amount of ferrite in the metal matrix of SGI
results in increasing of the impact toughness.
The lowest eutectic temperature or temperature of

eutectic undercooling ϑElow (Fig. 1a) is related to the
nucleation state of the melt. Low value of tempera-
ture of eutectic undercooling indicates poor nucleation
properties of the melt, i.e. a low number of active sites
for nucleation of graphite. Moreover, if the tempe-
rature of eutectic undercooling lies below the meta-
stable temperature, primary carbides may accrue in
the microstructure. Low density of graphite particles,
i.e. graphite nodules in the metal matrix and the pres-
ence of carbides in the microstructure, has a negative
influence on impact toughness of SGI.
Recalescence ϑR (Fig. 1a) represents the difference

between the highest eutectic temperature ϑhigh and
the lowest eutectic temperature (temperature of eu-
tectic undercooling) ϑElow. Recalescence is the indic-
ator of the eutectic growth, i.e. the amount of aus-
tenite and graphite that are precipitated during the
early stage of eutectic solidification. High recalescence
indicates the poor nucleation properties of the melt.
Moreover, high recalescence is related to the non-
continuous precipitation of graphite during the solid-
ification. Too high amount of graphite precipitated in
the early stage of eutectic solidification results in a
small amount of available graphite during the later so-
lidification. Due to that, secondary sites of nucleation
are not activated, which may result in a low nodule
count.
Solidus temperature ϑS (Fig. 1a) is an important

thermal parameter for monitoring the end of the so-
lidification. Segregation of carbide forming elements
such as Cr, Mn, V etc. at cell boundaries causes an
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increase of the metastable temperature. If the solidus
temperature lies below the metastable temperature,
intercellular carbides may accrue in the microstruc-
ture. Intercellular carbides have a negative influence
on the impact toughness of SGI.
GRF1 (Fig. 1a) is the parameter that reflects how

much eutectic, i.e. eutectic graphite is precipitated
during the second part of eutectic (from ϑhigh to ϑS).
A high GRF1 indicates continuous precipitation of eu-
tectic graphite, which is related to the activation of
secondary nucleation sites. This results in the mov-
ing of the eutectic reaction toward longer times. This
mode of eutectic solidification, when the nucleation
and the growth of eutectic occur in longer times, res-
ults in a higher distribution of sizes of the precipit-
ated graphite, i.e. a higher density of graphite particles
in the metal matrix. A higher number of graphite
particles during the eutectoid transformation enable
the formation of a higher fraction of ferrite in the mi-
crostructure, i.e. higher impact toughness.
GRF2 (Fig. 1b) is a parameter that reflects the

change of the cooling rate at the end of the solidifica-
tion, measuring indirectly thermal conductivity. Low
value of GRF2 indicates high thermal conductivity,
which is an indicator of a high amount of graphite at
the end of the solidification. Low value of the first de-
rivative of the cooling curve at solidus (higher depth

of the negative peak)
d
dt

ϑS (Fig. 1b) is related to the

high amount of eutectic graphite at the end of the so-
lidification, i.e. a high nodule count in the SGI. There-

fore, GRF2 combined with
d
dt

ϑS is a strong indicator

of thermal conductivity, i.e. the graphite shape and
nodule count in SGI.
The eutectoid transformation has an important

influence on the final microstructure of SGI. The
solid state transformation of austenite into ferrite and
pearlite occurs at the eutectoid temperature. The frac-
tion of ferrite and pearlite in the microstructure of
SGI depends on the chemical composition, the cool-
ing rate through the eutectoid transformation range,
the volume fraction and the number of graphite nod-
ules. When pearlite is created latent heat is released,
which is visible as an arrest in the cooling curve. At
higher amounts of pearlite, recalescence occurs during
the eutectoid transformation. Recalescence represents
the difference between the high (ϑoidhigh) and the low
eutectoid temperature (ϑoidlow). The place of the low
eutectoid temperature (ϑoidlow) on the cooling curve in
the eutectoid range is presented on Fig. 2. A fully fer-
ritic SGI does not show recalescence. It has also been
found that the increasing of the amounts of pearlite
in the metal matrix lowers the low eutectoid tempera-
ture. Therefore, the low eutectoid temperature is the
indicator of the fraction of pearlite in the metal matrix
of SGI. The impact toughness of SGI decreases with

the increase of the amount of pearlite in the metal
matrix.

5. Conclusions

Artificial neural networks (ANN) are a powerful
tool which enables the engineer to study and analyse
complex interactions between the material and pro-
cess inputs with the goal of predicting final component
properties. Developed Backpropagation Neural Net-
work (BPNN) successfully predicts the as-cast impact
toughness of SGI using the TA parameters as inputs.
A very good accordance between the measured and
the predicted as-cast impact toughness was achieved.
The obtained results show that the analysis of the

cooling curve and neural network modelling enables
the formation of mathematical models for the predic-
tion of microstructural and mechanical properties of
cast irons before pouring of the melt into the moulds.
This allows for corrective measures to be taken with
the purpose of obtaining the required microstructural
and mechanical properties of castings as well as the
decrease in the percentage of the waste castings.
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