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Calculation of liquidus temperature for steel
by Le Châtelier-Shreder and van Laar-Bowen equations
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Abstract

This paper deals with the calculation of temperature of liquid phase in the Fe-admixture
binary systems. Two cases are considered in the calculations:
1. equilibrium of pure δ-iron with ideal melt of alloying element containing iron according

to the Le Châtelier-Shreder equation,
2. ideal solid solution of δ-ferrite with ideal melt of alloying element containing iron ac-

cording to modified van Laar-Bowen equation by distribution coefficients.
Decrease of melting point of δ-iron in the binary systems is calculated as the difference

between melting point of pure δ-iron and melting point of δ-iron containing 1 wt.% of alloying
element. The melting point decrease for the polycomponent system (steel) is calculated as
a sum of individual (binary) melting point decreases, which, consequently, gives the melting
temperature of low-alloyed steels.

K e y w o r d s: decrease of melting point, binary system Fe-X, liquidus temperature, steel,
distribution coefficients, ideal systems

1. Introduction

Melting point is an important parameter in steel
casting because from it the optimal casting tempera-
tures are derived and the course of solidification pro-
cess can be predicted.
Heterogeneous processes such as melting or solid-

ification are described by the melting point of δ-iron,
temperature of melt and the decrease of melting point
of δ-iron due to the presence of impurities and alloy-
ing elements [1–4]. The melting point of δ-iron TTAVδ−Fe
is 1811 K, the molar heat of melting at melting point
∆HTAV1811,δ−Fe is 13 806 J ·mol−1, molar entropy at melt-
ing point ∆STAV1811,δ−Fe is 7.62 J ·mol−1 ·K−1 [5].
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2. Calculation of melting point decrease of
iron in binary systems

The fundamental principle of melting point calcu-
lation takes stand on equality of chemical potentials
of iron and alloying elements at phase equilibrium δ-
iron↔melt:

µδ
Fe = µlFe, (1)

µ0δFe +RT lnxδ
Fe = µ0lFe +RT lnxlFe (2)

if ∆µ0Fe = µ0lFe − µ0δFe = ∆GTAVFe (3)

if ∆GTAVFe = ∆HTAVFe − T∆STAVFe , (4)
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ln
xδ
Fe

xlFe
=
∆HTAVFe

R

(
1
T l

− 1
TTAVδ−Fe

)
, (5)

T l =
∆HTAVFe

∆STAVFe +R ln xδ
Fe

xlFe

. (6)

1) If iron and alloying element behave in melt
ideally and the solidified phase is pure δ-iron, i.e.
xδ
Fe = 1, then the melting point can be calculated
using Le Châtelier-Shreder equation derived below in
Eq. (7):

T l =
∆HTAVδ−Fe

∆STAVδ−Fe − R ln
(
1− xli

) . (7)

It is common practice to express the change in melting
point for 1 wt.% of alloying element as follows:

xli,wi=1% =

1
Mi

1
Mi
+
100− 1

MFe

, (8)

where MFe = 55.847 g ·mol−1 [5].

T
l(9)
wi=1%

=
∆HTAVδ−Fe

∆STAVδ−Fe − R ln (1− xli,wi=1%
)
. (9)

2) If iron and alloying element behave ideally in
both melt and solid phases the basis of melting point
calculation is given by van Laar-Bowen equation in its
general form:

T l =
∆HTAVδ−Fe

∆STAVδ−Fe +R ln
1− xδ

i

1− xli

. (10)

a) If the equilibrium distribution coefficient of i-th
alloying element in iron is taken as isothermal ratio of
molar fractions of i-th alloying element in solid xδ

i and
liquid phase xli [4, 6] then the calculation of melting
temperature for 1 wt.% of admixture can be carried
out as follows:

ki =
xδ

i

xli
, (11)

T
l(12)
wi=1%

=
∆HTAVδ−Fe

∆STAVδ−Fe +R ln
1− kix

l
i,wi=1%

1− xli,wi=1%

. (12)

b) If the limiting equilibrium distribution coeffi-
cient of i-th admixture in iron is inserted into Eq. (10),
the following formula for melting temperature can be
derived:

klimi = lim
xi→0

xδ
i

xli
, (13)

T
l(14)
wi=1%

=
∆HTAVδ−Fe

∆STAVδ−Fe +R ln
1− klimi xli,wi=1%

1− xli,wi=1%

. (14)

The melting temperature decrease of δ-iron caused
by the addition of 1 wt.% of alloying element can
be calculated as the difference between melting point
of pure iron and the temperature of melt containing
1 wt.% of admixture:

∆Twi=1% = TTAVδ−Fe − T lwi=1% = 1811− T lwi=1%. (15)

The values of melting temperature decrease for
1 wt.% of the individual alloying elements for
1) ki = 0, Eq. (9),

2a) ki = k
P(E)
i , Eq. (12),

where k
P(E)
i is the distribution coefficient of admixing

element in iron at the peritectic or eutectic tempera-
ture. Alternatively, temperature of minimum on the
solid and liquid curves can be used (Fe-V, Fe-Cr, Fe-
-W);
2b) ki = klimi , Eq. (14)

are summarized in Table 1 in columns 6–8. To compare
the calculated values with experimental ones, the data
from different authors are given in columns 9–11.

3. Calculation of melting temperature
decrease of iron in polycomponent (steel)

systems

If no interaction between alloying elements is pre-
sumed the rule of additivity can be applied, i.e. the
total temperature decrease is the sum of individual
temperature decreases for each alloying element:

∆Ttotal =
∑
∆Twi=1% ×%i, (16)

T l = TTAVδ−Fe −∆Ttotal = 1811−∆Ttotal. (17)

4. Discussion

The melting point decreases of iron calculated us-
ing Le Châtelier-Shreder equation are too high due to
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Ta b l e 1. Melting point decrease of binary systems (iron-admixture) for 1 wt.% of admixing element ∆T lwi=1%
taken

from literature and calculated for 1) ki = 0, 2a) ki = k
P(E)
i , 2b) ki = klimi

∆T lwi=1%

Alloying Mi xli,wi=1%
k
P(E)
i klimi

element (g ·mol−1) [6] [6] 1) 2a) 2b) [6] [7] [8]

1 2 3 4 5 6 7 8 9 10 11

B 10.811 0.0496 0.07 0.045 95.2 89.0 91.2 98 – 90
C 12.0107 0.0449 0.17 0.19 86.4 72.6 70.9 86.6 65 73
N 14.007 0.0387 0.28** – 74.7 54.7 – – – –
O 15.9994 0.0341 0.17 0.15 66.0 55.3 56.6 – – 11 for 0.16 %
Al 26.9815 0.0205 0.85 0.88 40.0 6.2 4.9 11.8 – 3
Si 28.0855 0.0197 0.82 0.66 38.5 7.1 13.4 13.9 8 12
P 30.9738 0.0179 0.31 0.14 35.0 24.4 30.2 32.3 30 28
S 32.065 0.0173 0.013 0.062 33.8 33.4 31.8 30.5 25 30
Ti 47.867 0.0116 0.62 0.35 22.8 8.7 14.9 14.9 – 18
V 50.9415 0.011 1* 0.87 21.6 0.0 2.8 2.9 2 2
Cr 51.9961 0.0107 1* 0.9 21.0 0.0 2.1 2.1 1.5 1
Mn 54.9380 0.0102 0.72 0.69 20.0 5.7 6.3 6.2 5 3
Ni 58.6934 0.0095 0.77 0.69 18.7 4.3 5.8 5.6 4 3.5
Co 58.9332 0.0095 0.85 0.84 18.7 2.8 3.0 3 – 1.8
Cu 63.546 0.0088 0.52 0.78 17.3 8.4 3.8 3.8 5 7
As 74.9216 0.0075 0.39 0.21 14.7 9.0 11.7 11.8 – 14 for 0.5 %
Nb 92.9064 0.006 0.27 0.37 11.8 8.6 7.5 7.5 – –
Mo 95.94 0.0058 0.99 0.73 11.4 0.1 3.1 3.1 – 2
Sn 118.71 0.0047 0.26 0.28 9.3 6.9 6.7 6.7 – 10 for 0.03 %
Ta 180.948 0.0031 0.32 0.44 6.1 4.2 3.4 3.5 – –
W 183.84 0.0031 1* 0.83 6.1 0.0 1.0 0.9 – < 1

Remarks: * value of distribution coefficient at minimum on the curves of solidus and liquidus; ** value of kP(E)N taken from
[8]

the fact that the solid phase obtained during solidific-
ation is not, typically, pure δ-iron.
The binary systems of chromium-iron, vanadium-

-iron and tungsten-iron show minimum on the solid
and liquid curves at which the temperature distribu-
tion coefficients are equal one. Consequently, values
of melting point decrease calculated according to Eq.
(15) are zero. In this case, therefore, it is recommended
to read the melting point decrease directly from the
phase diagrams. They are 1.26◦C per 1 wt.% of chro-
mium, 2.4◦C per 1 wt.% of vanadium and 0.68◦C per
1 wt.% of tungsten. Another possibility is to calculate
the melting point decrease using limiting distribution
coefficients as it is done in Table 1, column 8. The
calculated melting point decreases (Table 1, columns
7 and 8) agree reasonably with the literature values in
Table 1, columns 9–11.

5. Conclusion

The van Laar-Bowen equation (12), modified by
(16), (17), (values from Table 1, column 7), is recom-
mended for the calculation of the melting point de-
crease of δ-iron (1 wt.% of admixture) – Eq. (18).

It is recommended to calculate melting point de-
crease of low-alloyed steels, such as deep-drawing,
transformer, micro-alloyed or structural steels, accord-
ing to the following formula:

T lsteel = 1811− 72.6×%C− 7.1×%Si− 5.7×%Mn
− 24.4×%P− 33.4×%S− 2.1×%Cr
− 2.8×%V − 6.2×%Al− 8.4×%Cu
− 4.3×%Ni− 2.8×%Co− 8.6×%Nb
− 4.2×%Ta− 8.7×%Ti− 9×%As
− 1×%W − 6.9×%Sn− 54.7×%N
− 0.1×%Mo− 55.3×%O− 89×%B.

(18)
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