
KOVOVÉ MATERIÁLY, 41, 2003, č. 4 223

EFFECTIVE THERMAL CONDUCTIVITY
OF FIBROUS COMPOSITE MATERIALS

ŠTEFAN BARTA1*, PETER DIEŠKA1

On the basis of mean field approximation method, the formula for the longitudinal
and transverse effective thermal conductivity of composite with coated fibres and the
relation for effective thermal conductivity of the coated fibre of the nth component of
fibre composite are derived. In the case of binary system, the dependence of the transverse
effective thermal conductivity on the ratio of the thermal conductivity of metal matrix
and effective thermal conductivity of coated fibres is defined. When this ratio is larger
than 1, the effective thermal conductivity may be expressed by the rule of mixture. It is
shown that at a certain value of the area fraction (percolation threshold) the percolation
phase transition occurs.

K e y w o r d s: thermal conductivity, fibre composite, percolation analysis

EFEKTÍVNA TEPELNÁ VODIVOSŤ VLÁKNITÝCH
KOMPOZITNÝCH MATERIÁLOV

Na základe metódy stredného poľa sa odvodil vzťah pre longitudinálnu a transverzál-
nu efektívnu tepelnú vodivosť vláknitých kompozitných materiálov s povrchovo upravený-
mi vláknami. Ďalej sa odvodil vzťah pre efektívnu tepelnú vodivosť povrchovo upraveného
vlákna n-tého komponentu vláknitého kompozitu. Pri binárnom systéme sa našla závislosť
transverzálnej efektívnej tepelnej vodivosti vláknitého kompozitného materiálu od pomeru
tepelnej vodivosti kovovej matrice k efektívnej tepelnej vodivosti povrchovo upraveného
vlákna. Ak tento pomer je väčší ako jeden, potom vzťah pre efektívnu tepelnú vodivosť
vláknitého kompozitu sa môže vyjadriť pomocou zmiešavacieho pravidla. Nakoniec sa
ukázalo, že pri určitej hodnote plošného zlomku (prah perkolácie) prebieha perkolačný
fázový prechod.

1. Introduction

According to applications the fibre-reinforced metal matrix composite should
fulfill several requirements, e.g. good mechanical properties, very good thermal
conductivity, low density, and tailorable coefficient of thermal expansion. Good
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mechanical properties can be achieved by enhancing the cohesive strength between
fibres and metal matrix. Increasing inter-facial adhesion strength is generally car-
ried out in two ways: by forcing fibre reaction with the metal matrix or by deposition
of both Fe and Ni layers on the copper coated carbon fibres (chemical or dissolution
bonding). All the mentioned properties of the fibrous composites are important in
the applications where especially thermal conductivity plays large role in solving
the problems of heat dissipation. The heat is produced by an integrated circuit
and must be removed using a new generation of heat sink material. The carbon
fibre-reinforced copper matrix composite is a candidate for applications, e.g. pack-
aging for high voltage chips, cooling plates for microwaves and heat sinks. The
physical properties and manufacturing of fibrous composites are in detail described
in [1–14].

The aim of this paper is to derive the relation for effective thermal conduc-
tivity of fibrous composite materials where fibres are coated by certain suitable
material for improving mechanical and thermo-physical properties. Generally, the
fibrous composites are regarded as ones consisting of various kinds of coated fibres.
The individual kind of coated fibres will further be called as a component. The
fibrous composites may have several types of fibre orientations. In this paper we
will consider unidirectional composites where all kinds of fibres are parallel and go
through the whole sample.

Generally the fibrous composite material at the sub-macroscopic level (on the
length scale of linear dimension of fibres) is heterogeneous because it is composed
of certain components which, on the one hand, are spatially separated from each
other and, on the other hand, are randomly distributed over the whole cross-section
of the sample. Due to this randomness the local physical quantities at the sub-
-macroscopic level are not only dependent on space coordinates but they are also
random quantities. For this reason the heat conduction on the sub-macroscopic level
is described by the phenomenological stochastic heat conduction equation. However
at the macroscopic level fibrous composite usually is homogeneous but anisotropic
and it may be characterized by the effective tensor thermal conductivity which is
independent on space coordinates.

For derivation of the relation for effective tensor thermal conductivity one uses
the phenomenological heat conduction equation. This is justified only if the linear
dimensions of fibres are much larger than the mean free path of heat carriers which
participate on the transport of energy, but, on the other hand, they have to be
much smaller with respect to the macroscopic scale.

Manufacturing of fibrous composite, it is very important to know how the
effective parameters depend on the structure of fibrous composite at the sub-
-macroscopic level and also on the properties of the individual components of fi-
brous composite. This information is very important especially for technologists.
This is the main reason why we derive the relation for the effective tensor thermal
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conductivity. The statistics of the structure of the fibrous composite at the sub-
-macroscopic level is usually unknown and what we only know are the area frac-
tions which are known from the manufacturing process. If the fibrous composite at
the macroscopic level is a homogeneous one, we can use the following Assump-
tion: The probability of the occupation of the nth component on a certain place
in the plane perpendicular to fibres is equal to its areal fraction. From this point
of view one deals with a 2-dimensional case. The derivation of the relation for the
effective tensor thermal conductivity is connected with mathematical difficulties
and, therefore, one is obliged to use approximate methods. One of these approxi-
mate methods is the mean field approximation method (MFAM), which is used in
this article. The MFAM is based on the idea that a randomly chosen fibre of the
nth component, characterized by the tensor thermal conductivity λn, is submerged
into an unlimited effective medium, which is characterized by the effective tensor
thermal conductivity λeff . The MFAM assumes that by putting the fibre of the nth

component into the effective medium its properties do not change. It can be shown
that in the case of weak inhomogeneity the MFAM may give results of sufficient
accuracy [15]. The further information about the statistics of composites is given
in [16].

2. Effective tensor thermal conductivity of fibrous composite materials

We will consider the continuous fibre-reinforced matrix composite. The fibres
of the nth component may be covered with the surface layer characterized by the
tensor thermal conductivity λsn. We introduce the coordinate system where the y
and z axes are perpendicular to fibres and x axis is parallel to the fibres. Then the
tensor thermal conductivities have the following form:

λn = λn|| ii+ λn⊥(jj + kk)

is the tensor thermal conductivity of the nth component,

λsn = λsn|| ii+ λsn⊥(jj + kk)

is the tensor thermal conductivity of the surface layer of the nth component,

λeff = λeff ii+ λeff(jj + kk)

is the effective tensor thermal conductivity of the fibrous composite. i, j,k are the
unit vectors in the directions of x, y and z axis, respectively.

The fibrous composite at the macroscopic level is anisotropic also in the case
when the fibres and the surface layers are isotropic. The stationary heat equation
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in the effective medium due to anisotropy is as follows

λeff||
∂2〈T 〉

∂x2
+ λeff⊥

(
∂2〈T 〉

∂y2
+
∂2〈T 〉

∂z2

)
= 0, (1)

where 〈T 〉 is the average temperature due to the macroscopic character of measur-
ing instrument. The experimentalist observes the temperature averaged over large
number of fibres and, therefore, Texp = 〈T 〉 . The symbol 〈〉 means the average
value over the representative volume element. The expression for effective tensor
thermal conductivity will be found in two steps. At the first step we will derive the
effective thermal conductivity λeff⊥ and at the second one the λeff||.

2.1 P e r p e n d i c u l a r c o m p o n e n t o f t e n s o r t h e r m a l
c o n d u c t i v i t y λeff⊥

I.  fibre

II. effective medium

R

Fig. 1. Graphical representation of cross-
-section of uncoated fibre in effective me-

dium.

At first, as in the case of a particulate composite [16], we will consider
the case of fibres without coating. We find the effective thermal conductivity
λeff⊥ and then we focus our attention to the case when the fibres of the cer-

tain components are coated. This case
represents the main contribution of this
paper.

We will consider two regions
(Fig. 1). Due to the circular symmetry
the temperature T (y, z) is only a func-
tion of r =

√
y2 + z2. The stationary

heat equation has the form:
in region I (fibre)

∆T (I) = 0 (2)

and in the region II (effective medium)

∆T (II) = 0. (3)

The solution of Eqs. (2) and (3) considering the condition in infinity

lim
r→∞

∇T (II) = −E

is the following:
in region I

T (I) = −BE · r (4)
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and in region II

T (II) = −E · r +
C

r2
E · r. (5)

The constants B and C are determined from the boundary conditions

T (I)(R) = T (II)(R), (6)

−λn⊥∇T
(I) · r0 = −λeff⊥∇T

(I) · r0, (7)

where r0 is the unit vector perpendicular to fibre. Condition (7) expresses the
equality of the heat flow densities in the radial direction. From boundary conditions
(6) and (7) it follows

B =
1

1 +
λn⊥ − λeff⊥

2λeff⊥

(8)

and

∇T (I) = −
1

1 +
λn⊥ − λeff⊥

2λeff⊥

E, (9)

q = −
λn⊥

1 +
λn⊥ − λeff⊥

2λeff⊥

E = −λn⊥∇T (I), (10)

where q is the transverse heat flow density in the fibre of the nth component.
Using the Assumption, we can average relations (9) and (10). After averaging

we obtain the relations

∇〈T (I)〉 = −
N∑
n=1

cn
1

1 +
λn⊥ − λeff⊥

2λeff⊥

E (11)

and

〈q〉 = −
N∑
n=1

cn
λn⊥

1 +
λn⊥ − λeff⊥

2λeff⊥

E, (12)

where cn is the area fraction of the nth component in the plane perpendicular to
the fibres.
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Relation (12) can be written in the form

〈q〉 = −
N∑
n=1

cn
λn⊥ − λeff⊥

1 +
λn⊥ − λeff⊥

2λeff⊥

E − λeff⊥∇〈T
(I)〉. (13)

On the other hand, one can write

〈q〉 = −λeff⊥∇〈T
(I)〉. (14)

From (13) and (14) it immediately follows

N∑
n=1

cn
λn⊥ − λeff⊥

1 +
λn⊥ − λeff⊥

2λeff⊥

= 0. (15)

For the interpretation of the quantity E (integration constant) we can choose E =
−∇〈T (I)〉. By substituting this into (11) and (12) one obtains

N∑
n=1

cn
1

1 +
λn⊥ − λeff⊥

2λeff⊥

= 1 (16)

and

〈q〉 = −
N∑
n=1

cn
λn⊥

1 +
λn⊥ − λeff⊥

2λeff⊥

∇〈T (I)〉. (17)

From (14) and (17) it immediately follows

λeff⊥ =
N∑
n=1

cn
λn⊥

1 +
λn⊥ − λeff⊥

2λeff⊥

. (18)

It can be easily shown that relation (18) follows from (15) and (16). The effective
thermal conductivity λeff⊥ can be calculated either from relation (15) or from (16).

Now, we will consider the case when the fibres are coated. In this case we have
three regions (Fig. 2) where we use MFAM. In the first region there is the fibre of
the nth component with thermal conductivity λn⊥ and with the radius R1n. In the
second region there is the surface layer with the thermal conductivity λsn⊥ and
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with the radius of the surface layer together with fibre R2n. The third region is the
effective medium. The stationary heat equation has the following form:

����

��

��

��

��

II.
III.

I.

A

B

C

D

R1n

R2n

ro

Fig. 2. Graphical representation of cross-
section of coated fibre in effective medium.

in the region I (fibre)

∆T (I) = 0, (19)

in region II (surface layer)

∆T (II) = 0, (20)

in region III (effective medium)

∆T (III) = 0. (21)

The solutions of Eqs. (19), (20) and (21)
are expressed by the relations:

in the region I

T (I) = −BE · r, (22)

in the region II

T (II) = −CE · r +
D

r2
E · r, (23)

in the region III

T (III) = −E · r +
F

r2
E · r. (24)

Relation (24) fulfills the boundary condition in infinity

lim
r→∞

∇T (III) = −E.

The constants B,C,D, and F are determined from the boundary conditions:
at r = R1n

T (I)(R1n) = T (II)(R1n), (25)

−λn⊥∇T
(I)(R1n) · r0 = −λsn⊥∇T

(II)(R1n) · r0, (26)

and at r = R2n

T (II)(R2n) = T (III)(R2n), (27)

−λsn⊥∇T
(II)(R2n) · r0 = −λeff⊥∇T

(III)(R2n) · r0. (28)
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Conditions (26) and (28) express the continuity of the heat flow densities in
the radial direction. By substituting (22–24) into (25–28) one obtains

B = C −
D

R2
1n
, (29)

C −
D

R2
2n

= 1−
F

R2
2n
, (30)

λn⊥B = λsn⊥(C +
D

R2
1n

), (31)

λsn⊥

(
C +

D

R2
2n

)
= λeff⊥

(
1−

F

R2
2n

)
. (32)

From Eqs. (29) and (31) it follows

C =
λn⊥ + λsn⊥

2λsn⊥
B (33)

and
D

R2
1n

=
λn⊥ − λsn⊥

2λsn⊥
B. (34)

From Eqs. (30) and (32) one can obtain the following relation:

λeff⊥

(
C −

D

R2
2n

)
+ λsn⊥

(
C +

D

R2
1n

)
= 2λeff⊥. (35)

By substituting (33) and (34) into (35) one obtains

B = 4
λeff⊥λsn⊥

λn⊥

1
λeff⊥[1 + γn − αn(1− γn)] + λsn⊥[1 + γn + αn(1− γn)]

, (36)

where γn =
λsn⊥

λn⊥
and αn =

(
R1n

R2n

)2

. With the help of relations (33) and (34) one

can write

λeff⊥

(
C −

D

R2
2n

)
=
λeff⊥λn⊥

2λsn⊥
[1 + γn − αn(1− γn)]B (37)

and

λsn⊥

(
C +

D

R2
2n

)
=
λn⊥

2
[1 + γn + αn(1− γn)]B. (38)
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In the case of stationary heat conduction, we can write ∇ · q = 0. Due to this
fact the relation ∮

q · ds = 0 (39)

for arbitrary closed curve is valid, where ds = ds r0 is perpendicular to closed curve
and is oriented outwards. The heat flow through the AD (Fig. 2) is expressed by
the relation

Qn = −

D∫
A

qn · ds. (40)

Using relation (39) one can write

Qn =

A∫
D

qn · ds. (41)

From (23) it follows

qn = λsn⊥

[
CE −

D

R2
2n
E + 2

D

R2
2n
E · r0 r0

]
. (42)

By substituting (42) into (41) we obtain

Qn = λsn⊥

[
C +

D

R2
2n

] A∫
D

E · r0ds =

= λsn⊥

[
C +

D

R2
2n

] +π/2∫
−π/2

ER2n cosϕdϕ =

= λsn⊥

[
C −

D

R2
2n

]
2ER2n.

(43)

According to (43) the heat flow density is expressed by the relation

qn =
Qn

2R2n
= λsn⊥

[
C +

D

R2
2n

]
E. (44)

The direction of q is parallel to E if we orient y-axis parallel to E, so we can write

qn = λsn⊥

[
C +

D

R2
2n

]
E. (45)



232 KOVOVÉ MATERIÁLY, 41, 2003, č. 4

By substituting (36) and (38) into (45) one obtains

qn =
λn⊥

2
[1 + γn + αn(1− γn)]4

λeff⊥λsn⊥

λn⊥
1

λeff⊥[1 + γn − αn(1− γn)] + λsn⊥[1 + γn + αn(1− γn)]
.

(46)

After some arrangement we obtain

qn =
λ∗n⊥

1 +
λ∗n⊥ − λeff⊥

2λeff⊥

E, (47)

where

λ∗n⊥ = λsn⊥
1 + γn + αn(1− γn)
1 + γn − αn(1− γn)

. (48)

Comparison of relations (17) and (47) shows that λ∗n⊥ can be considered as
the effective thermal conductivity of the coated fibre of the nth component. In

Fig. 3 the dependence of
λ∗n⊥
λn⊥

on the γn for the various αn is shown. Finally, it is

necessary to present the physical meaning of the quantity E. For this reason we
calculate the average value of ∇T (II) within two semicircles AD and BC. Using
relation (23) one can write

∇T (II) =
1

π/2(R2
2n −R

2
1n)

+π
2∫

−π2

R2n∫
R1n

[
−CE +

D

r2
E − 2

D

r2
E · r0r0

]
rdϕdr = −CE,

(49)
where we used E = Ej and r0 = j cosϕ+ k sinϕ. The average value of the ∇T (I)

within the area of BC and the semicircle of radius R1n is expressed by the relation

∇T (I) =
1

π

2
R2

1n

+π
2∫

−π2

R1n∫
0

BErdϕdr = −BE. (50)

According to relations (49) and (50), the average value within the area of AD
and the semicircle of the radius R2n is defined as follows:

∇T =

π

2
R2

1n∇T
(I) +

π

2
(R2

2n −R
2
1n)∇T (II)

π

2
R2

2n

=
−R2

1nB − (R2
2n −R

2
1n)C

R2
2n

E =

= −
CR2

1n −D +R2
2nC −R

2
1nC

R2
2n

E = (C −
D

R2
2n

)E,

(51)
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Fig. 3. Plot of y =
λ∗n⊥
λn⊥

vs. γn =
λsn⊥

λn⊥
.
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where we used (29).
By inserting (36), (37) and (48) into (51) one obtains

∇T = −
1

1 +
λ∗n⊥ − λeff⊥

2λeff⊥

E. (52)

If we substitute λ∗n⊥ instead of λn⊥ in relation (9), we obtain relation (52). Aver-
aging (52) according to Assumption one obtains

〈∇T 〉 = −
N∑
n=1

cn
1

1 +
λ∗n⊥ − λeff⊥

2λeff⊥

E. (53)

Proceeding analogically as in (11–18), we obtain the following relations:

E = −〈∇T 〉, (54)

N∑
n=1

cn
1

1 +
λ∗n⊥ − λeff⊥

2λeff⊥

= 1, (55)

N∑
n=1

cn
λ∗n⊥ − λeff⊥

1 +
λ∗n⊥ − λeff⊥

2λeff⊥

= 0. (56)
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The effective thermal conductivity can be calculated either from (55) or from (56).
If the first N1 components consist of the coated fibres, the effective thermal

conductivity can be obtained as a solution of the following equation:

N1∑
n=1

cn
λ∗n⊥ − λeff⊥

1 +
λ∗n⊥ − λeff⊥

2λeff⊥

+
N∑

n=N1+1

cn
λn⊥ − λeff⊥

1 +
λn⊥ − λeff⊥

2λeff⊥

= 0. (57)

The longitudinal effective thermal conductivity λeff|| can be calculated very
easily because all fibres are parallel, so we can directly write

λeff|| =
N∑
n=1

cnλ
∗
n||, (58)

where

λ∗n|| =
Snλn|| + Ssλsn||

Sn + Ss
,

Sn is the area of the cross-section of fibre of nth component, Ss is the area of the
cross-section of the surface layer of the nth component. The present method can
be applied also in a more general case when the fibres are cross-plied or woven
in-plane.

3. Analysis and generalization of the obtained results

Usually the fibrous composite consists of the same kind of coated fibres and of
the metal matrix (binary system). The metal matrix is considered as an isotropic
one. In this case the effective transverse thermal conductivity is obtained according
to relation (57) by the solution of the following equation

c
1− x
1 + x

+ (1− c)
r − x

r + x
= 0, (59)

where c is the area fraction of the coated fibres component in the plane perpendic-

ular to the fibres, x =
λeff⊥

λ∗1⊥
, r =

λ2

λ∗1⊥
, λ2 is the thermal conductivity of the metal

matrix and λ∗1⊥ is the effective thermal conductivity of the coated fibre.
The solution of Eq. (59) is as follows:

x = {(1− r)(1− c) +

√
(1− r)2(c−

1
2

)2 + r}. (60)
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If λ2 = 0, the relation (60) transforms into the form

x = 0; c ≤
1
2

(61)

and

x = 2

(
c−

1
2

)
; c >

1
2
. (62)

The area fraction ck =
1
2

is called the percolation threshold. The interpretation of

relations (61) and (62) is as follows: The cross-section of the coated fibre in the
plane perpendicular to the fibres has the circular form. These cross-sections of the
coated fibres form clusters. In the case c < ck these clusters are separated from
each other and, therefore, a sample is thermally non-conducting (λeff⊥ = 0). At
c = ck some clusters connect themselves together and form a percolation cluster,
which is spread out through the whole plane perpendicular to the fibres. From this
moment λeff⊥ is increasing with area fraction c. This effect is called percolation
and at c = ck the percolation phase transition takes place. The detailed overview
of the percolation is given in [17].

The percolation threshold ck for different types of the 2-dimensional lattices
are given in Table 1 in [16]. These values were obtained by Monte Carlo simulations

on different 2-dimensional lattices. MFAM yields the value ck =
1
2

, which is the

same as for triangular lattice. In the further text we denote ck as g and we will
consider g as a free parameter which will be determined from the best fitting
of the experimental data with the theoretical relation for the effective thermal
conductivity.

From the renormalization group analysis it follows that instead of (59) the
following relation is valid:

x = 2(c− g)t; c > g. (63)

It is interesting to note that the parameter t (critical index) depends only on
dimensionality of the sample. For 2-dimensional case t = T = 1.15, but relation
(63) with this value of parameter t is valid only near to the percolation threshold
g.

Now we approach the generalization of relation (59) analogically as in [16].
The generalization will be done so as to fulfill the following requirements:

• For c = 0 x =
λ2

λ∗1⊥
.

• For c = 1 x = 1.
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• For r = 0 relation (63) is valid with the parameter t = T close to the
percolation threshold g (critical domain).

• For t = 1 and g =
1
2

it has to give relation (62).

The relation which fulfills the above-mentioned requirements has the following
form:

c
1− x

1
t

(1− g)x
1
t + g

+ (1− c)
r

1
t − x

1
t

(1− g)x
1
t + gr

1
t

= 0. (64)

The solution of Eq. (64) can be expressed in the form:

x =

c(1− r
1
t ) + (1− g)r

1
t − g

2(1− g)
+

√√√√[c(1− r 1
t ) + (1− g)r

1
t − g

2(1− g)

]2

+
g

1− g
r

1
t


t

.

(65)
For r = 0 one obtains

x = 0, c ≤ g (66)

and

x =
(c− g)t

(1− g)t
, c > g. (67)

The computer simulations on the lattices show that for increasing c the parameter
t is approaching 1. From this fact it follows that t is dependent on c. The form of
the function t(c) may be determined from the conditions: t = 1 at c = 0 and c = 1;
t = T = 1.15 at c = g. If we expand function t(c) into power series according to c
up to the quadratic term and consider the above-mentioned requirements we can
write the relation

t(c) = 1 +
T − 1
g(1− g)

c(1− c). (68)

For graphical illustration of the difference between relations (60) and (65) the
dependence of x vs. c is depicted in Fig. 4. The full line corresponds to r = 1.2,

t = 1 and g = 1
2 , the cross one to r = 1.2, g =

1
2

and T = 1.15. From the Fig. 4 it

is evident that the difference between the both dependences may be neglected (this
is valid only for r > 1). This behaviour of the dependences in the 2-dimensional
case is different from that in the 3-dimensional case [16]. Due to this fact in the
further text we will consider t = 1. For the illustration of the behaviour of the

dependences x =
λeff⊥

λ∗1⊥
vs. c these dependences are depicted in Fig. 5 for r < 1

and for r > 1. From Fig. 5 it is evident that the curves approach to the straight
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Fig. 4. Relative transverse effective ther-

mal conductivity x =
λeff⊥

λ∗n⊥
vs. area frac-

tion of the fibres, c; r = 1.2; g = 0.5;

t(c) = 1 + (T − 1)
c(1− c)
g(1− g)

; T = 1.15.

Fig. 5. Relative transverse effective ther-

mal conductivity x =
λeff⊥

λ∗n⊥
vs. area frac-

tion of the fibres, c; t = 1 and g = 0.5.

line if r approaches to r = 1 or r > 1. If r > 1, one can express the dependence of

x =
λeff⊥

λ∗1⊥
vs. c with the sufficient accuracy by the following relation

x = a+ bc.

It is evident that for c = 0, x =
λ2

λ∗1⊥
and for c = 1, x = 1. Considering these facts

one obtains

x =
λ2

λ∗1⊥
−

(
λ2

λ∗1⊥
− 1

)
c. (69)

Relation (69) expresses the rule of mixtures.

It is interesting to note that for c = g =
1
2

it follows from (65) that x =
√
r

for the arbitrary value of t. For this case one can write λeff⊥ =
√
λ2λ

∗
1⊥ which is

the geometric average.
The sharp percolation phase transition can be observed only in the case when

r = 0. In real applications the thermal conductivity of the metal matrix is finite
and, therefore, we cannot observe the percolation phase transition. But there is a
condition, when the percolation, in a certain sense, may be identified. Proceeding
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analogically as in [16] one can show that the second derivative of the function x(c)
has the maximum near the percolation threshold g. It can be shown that for t = 1
and r < 1 the relation

c∗ =
g(1 + r)− r

1− r
(70)

is valid. The c∗ means the value at which
d2x

dc2
has its maximum. From (70) it

follows: the smaller is r the better c∗ ≈ g holds.

4. Conclusions

– The formula for the longitudinal and transverse effective thermal conductiv-
ity of fibrous composite with coated fibres of certain components was derived.

– Further, the relation for the effective thermal conductivity λ∗n⊥ of the coated
fibre of the nth component of fibrous composite was derived.

– In the case of binary system, the formula for the transverse effective thermal
conductivity of fibrous composite was generalized by introducing the parameter t
which may be dependent on the area fraction c of the fibres. But the numerical
calculation has shown that the parameter t is weakly dependent on c. Therefore,
it is sufficient to consider t = 1.

– In the case of binary system an analysis of the obtained results was per-
formed.

– The transverse effective thermal conductivity of binary system in the case

when c = g =
1
2

(the percolation threshold) is independent on t, and it can be

expressed as a square root of the geometric average of the thermal conductivity of
metal matrix λ2 and the effective thermal conductivity λ∗1⊥ of the coated fibre.

– For r near to r = 1 and for r > 1 the transverse effective thermal conductivity
of binary system can be calculated with sufficient accuracy by using the rule of
mixtures.

– It was shown that in the case when λ2 = 0 and ck = g (percolation threshold),
the percolation phase transition takes place.
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