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COMPARISON OF X-RAY LINE PROFILE
AND DIP TEST MEASUREMENTS OF INTERNAL

STRESSES DURING HIGH TEMPERATURE CREEP
OF COPPER

KAREL MILIČKA1, FERDINAND DOBEŠ*1, ERHARD SCHAFLER2,
MICHAEL ZEHETBAUER2

Internal stresses resulting in polycrystalline copper from creep deformation at tem-
peratures of 773 and 873 K were investigated by two different methods. The first one was
the analysis of asymmetric X-ray line profiles. The second one was the dip test technique,
which consisted in observation of strain rate after stress changes. The values of internal
stresses obtained by these two methods turn out to be not identical, but a close analysis
in terms of the composite model shows that the difference in data arises from differences
in the definitions of internal stresses. A relation between the internal stresses based on
the composite model has been derived which reveals that the data received by the two
methods are fully compatible when a reasonable value of dislocation interaction coefficient
is chosen.
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POROVNÁNÍ VNITŘNÍCH NAPĚTÍ PŘI VYSOKOTEPLOTNÍM
CREEPU MĚDI MĚŘENÝCH RENTGENOGRAFICKY

A TECHNIKOU ZMĚN NAPĚTÍ

Vnitřní napětí vznikající při creepové deformaci mědi při teplotách 773 a 873 K byla
studována dvěma technikami. První z nich byla analýza asymetrických profilů rentgeno-
vých difrakčních čar. Druhá technika využívala metodu „dip testuÿ, která spočívala ve
stanovení zbytkového aplikovaného napětí, po kterém je pozorována nulová rychlost de-
formace. Hodnoty vnitřního napětí získané těmito dvěma metodami nejsou identické. De-
tailnější analýza pomocí kompozitního modelu ukazuje, že rozdíly v měřených hodnotách
jsou způsobeny odlišnými definicemi vnitřních napětí. Je odvozen vztah mezi vnitřními
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napětími založený na kompozitním modelu, který dokládá, že údaje získané dvěma meto-
dami jsou plně kompatibilní, pokud se zvolí vhodná hodnota dislokačního interakčního
koeficientu.

1. Introduction

A general feature of microstructures in single-phase materials deformed at both
room temperature and at elevated temperatures is the existence of heterogeneous
distribution of dislocations. Regions of tangles, cell walls or subgrain boundaries
with high dislocation density separate the regions of lower dislocation density in
cells or in subgrain interiors [1]. The occurrence of heterogeneous microstructure
is accompanied by long-range internal stresses. This was first proved by the ob-
servation of curved dislocation segments in the vicinity of subgrain boundaries [2].
The subsequent high-resolution X-ray diffraction experiments enabled the quanti-
tative evaluation of such internal stresses by an analysis of asymmetry of X-ray
line profiles [3]. The positive (i.e. forward) internal stresses are observed in cell
walls/subgrain boundaries areas, ∆σw, and these are compensated by negative (i.e.
backward) internal stresses in cell/subgrain interiors, ∆σc. By the X-ray method
applied in the present article, the difference of the above local internal stresses is
determined, |∆σw −∆σc|. In what follows, this quantity will be designated as the
long-range internal stress.

The stress acting on a moving dislocation can be divided into (i) a component
that overcomes the stresses generated by neighbouring dislocations or other long-
-range obstacles and (ii) a component that opposes a velocity-dependent lattice
friction. This idea was a motivation to apply another method for estimation of
internal stresses, known as the dip test technique [4]. The method consists in a
reduction of the applied stress to the level, at which the strain rate equals zero.
The internal stress is then defined as the residual stress acting on the specimen
after the critical stress change, σi = σ −∆σcrit. We will designate this quantity as
the dip-test internal stress.

In the present contribution, the results of measurements carried out by both
methods on identical polycrystalline Cu samples, which have been deformed by
creep at high deformation temperatures, are presented. The paper also reports
on quantitative relations between the long-range internal stress, |∆σw −∆σc|, as
measured by the X-ray line profile analyses and the dip-test internal stress, σi, by
performing stress dip tests.

2. Experimental technique

2.1 C r e e p t e s t s a n d d i p t e s t m e a s u r e m e n t

For the experiments, oxygen-free copper of purity higher than 99.99 % was
used. Specimens had a gauge length 12 mm and a cross section diameter 6 mm.
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The average grain size was 0.10 mm. The creep tests were performed in argon atmo-
sphere under constant compressive stress at temperatures of 773 and 873 K, respec-
tively. The stress was maintained constant by means of a modified lever system [5].
Creep deformation was measured using the linear variable differential transducer
(W2K or W5K by Hottinger-Baldwin Co.), and was continuously PC-recorded. The
recording frequency of the transient strain response after stress change was 12 Hz.
The internal stress in steady state creep was measured by the strain transient dip
test technique proposed by Ahlquist and Nix [4]. Stress changes were performed in
steady-state stage only. Time spent at reduced stress was limited to a minimum
necessary for a safe determination of the creep rate after the stress reduction (ty-
pically less than 10 sec). After this time, the specimen was reloaded to the original
stress value. It was possible to perform about 10 of such stress reductions in period
of the steady state creep in one test. Sufficient strain was left between subsequent
stress reductions, so that the creep rate could recover to its original steady-state
level. The specimens for X-ray measurements were crept at the same conditions as
in the dip tests, but without stress changes.

2.2 X - r a y B r a g g p e a k p r o f i l e a n a l y s i s ( X PA )

The 0.3 × 3 mm line focus of an AXS Bruker rotating Cu anode was used,
operating at 45 kV and up to 100 mA. The primary X-ray beam was monochro-
matized by an asymmetrically cut plane Ge crystal using the 444 reflection and
tuned to CuKα1 line (l = 1.54 Å). The cross section of the footprint of the beam
on the sample was about 0.1× 1 mm2. The scattered radiation was registered by a
linear position sensitive X-ray detector type OED-50 (Braun, Munich, FRG). The
sample-to-detector distance was about 1 m. The {200} reflection was measured.

2.3 E v a l u a t i o n o f X - r a y d i f f r a c t i o n p r o f i l e s

The determination of the dislocation densities and long-range internal stresses
has been carried out from single Bragg reflection profiles [3]. In the case of large
crystals containing dislocations, the real part of the Fourier coefficients of a profile
can be written as:

ln |A(n)| = −ρ∗n2 ln

(
Re

n

)
+Q∗n4 ln

(
R2

n

)
ln

(
R3

n

)
±O(n6), (1)

where ρ∗ is the “formal” dislocation density, directly available from a broadened
profile without taking into account the different types of dislocations and the rel-
ative orientation of their Burgers and line vector to the diffraction vectors. Q∗, in
the simplest case, can be interpreted as the spatial fluctuation of the dislocation
density, Re is the outer cut-off radius of dislocations, R2 and R3 are auxiliary con-
stants and n is the Fourier parameter [6]. Terms of the order of 6 and higher can be
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neglected [7]. For the present measurements, spatial fluctuations of dislocation den-
sity are not considered because their magnitude is below the measuring accuracy.
Thus, the true dislocation density ρ can be calculated from the formal (measured)
one ρ∗ [6–8], by the relation

ρ = ρ∗
2

πg2b2C̄
, (2)

where C̄ is the average contrast factor, g the diffraction vector and b the Burgers
vector of dislocations. C̄ can be calculated numerically on the basis of the crystal-
lography of dislocations and from the elastic constants of a crystal [8, 9]. In the
present work, samples were measured in axial case (g being parallel to deforma-
tion axis). Following the procedure described in [10] and considering {110} Burgers
vectors to be activated during compression on both faces 2 and 3 of the cubic ele-
mentary cell (for definition see [10]), C̄ = 0.306 results, assuming screw and edge
dislocations to be generated to equal parts. Together with known data for g and b
and the measured dislocation density ρ∗, the true dislocation density ρ can be now
calculated by means of Eq. (2).

The long range internal stresses arise from the fact that with progressing plastic
deformation the dislocations arrange in hard “cell walls” and soft “cell interiors”,
where the cell walls contain a high dislocation density compared to a much lower
one in the cell interior regions. This leads to different stress levels ∆σw and ∆σc

weighted by their volume fraction, which, considering the “composite model” of
Mughrabi and co-workers, have to be in balance [3, 11]. The result for the X-ray
line profile is an asymmetry arising from the composition of two sub-profiles corre-
sponding to differently strained cell-wall and cell-interior regions shifted differently
from the center of gravity of the measured profile. Using Hooke’s law, the local
internal stresses ∆σw and ∆σc can be calculated from the individual shifts of the
sub-profiles, which lead to the long range internal stresses |∆σw − ∆σc| between
the areas of cell walls and cell interiors [3, 10]. The volume fraction of hard regions
fw and that of soft regions (1− fw) are determined from the proportion of the
integral intensities of respective sub-profiles.

3. Experimental results

The results of measurements of the internal stresses are presented in Fig. 1.
The dip-test internal stress σi is increasing with increasing applied stress. The
dependence is similar to that observed in many pure metals and solid solutions
– a review can be found in Ref. [12]. On the other hand, no such dependence
can be seen in the behaviour of the long-range internal stress |∆σw − ∆σc|. The
dislocation density estimated from the X-ray measurements is presented in Fig. 2.
The dislocation density is approximately proportional to the square of the applied
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Fig. 1. Applied stress dependence of the internal stress measured by two techniques.

Fig. 2. Applied stress dependence of the total dislocation density measured by X-ray
technique.

stress, which is in accordance with the Taylor’s formula

σ ∝ Gb
√
ρ, (3)

where G is the shear modulus and b is the Burgers vector length. The temper-
ature dependence of the dislocation density is clearly stronger than that of the
shear modulus. The volume fractions of the subgrain wall areas derived from X-ray
diffraction measurements are presented in Fig. 3.
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Fig. 3. Applied stress dependence of the volume fraction of hard regions.

4. Discussion

As it was stated above, the applied stress in heterogeneous structures is redis-
tributed to σw in hard regions (cell or subgrain boundaries, respectively) and σc

in soft regions (cell/subgrain interiors). The stresses must fulfill the condition of
mechanical equilibrium

σ = fwσw + (1− fw)σc. (4)

Both the local stresses can be divided into the component overcoming the local long-
range internal stresses and the component opposing a velocity-dependent internal
friction:

σw = σiw + σ∗w, (5a)

σc = σic + σ∗c . (5b)

In the model described by Mughrabi [13] or by Sedláček [14], the moving dislocation
extends over both hard and soft regions and the density of moving dislocations, ρm,
is the same in both regions. Due to the compatibility condition, the strain rate is
also the same in both regions and the dislocation velocities equal each other. The
local dislocation velocities are then given by [15]

vw = v0 sinh

(
Awbσ

∗
w

MkT

)
, (6a)

vc = v0 sinh

(
Acbσ

∗
c

MkT

)
, (6b)
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where v0 is a temperature dependent (and structure independent) term, Aw and
Ac are respective activation areas, M is the Taylor factor (in polycrystalline cop-
per M = 3.06), k is the Boltzmann constant and T is the absolute temperature.
The activation area equals to the product of activation length and the length of
the Burgers vector b. In pure metals, the activation length is proportional to the
dislocation distance [16] and thus

Aw =
ωwb
√
ρw
, (7a)

Ac =
ωcb
√
ρc
, (7b)

where ρw and ρc are local dislocation densities in hard and in soft regions, and
ωw and ωc are respective proportionality constants. These constants are probably
different in different types of dislocation structures in subgrain boundaries and in
subgrain interiors. For the sake of simplicity, we will put in the following numer-
ical calculations ωw = ωc =

√
3, which corresponds to regular three-dimensional

dislocation network. The local effective stress is given as a difference of the local
applied stress and the local internal stress from neighbouring dislocations

σ∗w = σw − αMGb
√
ρw, (8a)

σ∗c = σc − αMGb
√
ρc (8b)

provided that the dislocation interaction coefficient α is the same for dislocations in
cell walls and cell interior. It follows from the above stated equality of dislocation
velocities in hard and soft regions, and by making use of Eqs. (6, 7, 8) that

σw
√
ρw

=
σc
√
ρc

. (9)

After a stress change, the local stress values in the hard and soft regions adjust to
the new values corresponding to changed external conditions. The total strain rate
as registered immediately after the stress change is thus given by the sum of elastic
and plastic components. For the critical stress reduction in dip test, the total strain
rate equals zero:

σ̇w

E
+
ρmbv0

M
sinh

[√
3b2(σw −∆σcrit − αMGb

√
ρw)

MkT
√
ρw

]
= 0, (10a)

σ̇c

E
+
ρmbv0

M
sinh

[√
3b2(σc −∆σcrit − αMGb

√
ρc)

MkT
√
ρc

]
= 0. (10b)
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For the plastic strain rate, the relation dε/dt = ρmbv/M has been used here, where
v was taken from (6).

If the time derivative of the volume fractions fw and fc can be neglected
(and this assumption is quite plausible since the applied stress dependence of the
volume fractions is negligible and, moreover, it is assumed that the structure does
not change in dip tests experiments), it follows from the Eq. (4) that in creep
conditions

fwσ̇w + fcσ̇c = 0. (11)

From Eqs. (10) and (11) we get

fw sinh

[√
3b2(σw −∆σcrit − αMGb

√
ρw)

MkT
√
ρw

]
+

+fc sinh

[√
3b2(σc −∆σcrit − αMGb

√
ρc)

MkT
√
ρc

]
= 0.

(12)

Equation (12) can be solved numerically for ∆σcrit and thus the dip test internal
stress can be calculated from the X-ray data, as will be shown as follows: Analyt-
ical solutions can be given for particular values of different arguments in the sinh
function:
small arguments:

σi = σ −
σc − αMGb

√
ρc

fc + fw
σc

σw

; (13)

large arguments:

σi = σ −

2 (σc − αMGb
√
ρc)−

MkT

b2
ln

(
fc

fw

)√
ρc

3

1 +
σc

σw

. (14)

By convincing oneself that the quantities σc, σw, fc, and fw are accessible by the
X-ray diffraction experiments (see footnote*), it comes evident that the internal

* The simultaneous measurement of the volume fraction fw and the long-range internal
stress ∆σw −∆σc by the X-ray technique offers possibility to calculate the local stresses
in the hard and soft regions:

σw = σ + (1− fw)(∆σw −∆σc), (15a)

σc = σ − fw(∆σw −∆σc). (15b)
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Fig. 4. Calculated values of the dislocation interaction coefficient in dependence on applied
stress.

stresses measured by different techniques are neither identical nor that their relation
is straightforward. The results of calculation of dip-test internal stresses via Eqs.
(12), (13) or (14) are sensitive to the value of interaction coefficient α. Values of
α calculated from Eq. (12) that lead to full compatibility of the dip-test internal
stress and of the X-ray measurements are given in Fig. 4. They all amount to about
0.1 that is in agreement with an analysis done by Lavrentev [17].

5. Comparison of measured internal stress data with available
literature

The local stresses can be expressed in terms of the stress intensity factors,
e.g., kw = σw/σ. A comparison of this quantity with the relevant data reported
previously by Straub et al. [18] for copper crept at temperatures ranging from 298
to 633 K at constant normalized stress σ/G = 0.0043 is given in Figs. 5 and 6.
The results confirm the conclusion suggested by Straub et al. [18] that the stress
concentration factor increases with increasing deformation temperature.

Dislocation densities in cell/subgrain boundaries, ρw, and in cell/subgrain in-
teriors, ρc, are coupled by the relation [19]

ρ = fwρw + fcρc. (16)

Owing to Eq. (9), both dislocation densities can be calculated from the data re-
ceived from X-ray measurements

ρw =
ρ

fw + fc (σc/σw)2 , (17a)

ρc =
ρ

fc + fw (σw/σc)2 . (17b)
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Fig. 5. Temperature dependence of the stress concentration factor. Comparison with the
results of Straub et al. [18].

Fig. 6. Applied stress dependence of the stress concentration factor. Comparison with the
results of Straub et al. [18].

The dislocation density in subgrain interiors calculated by means of Eq. (17b)
can be compared with the data obtained by transmission electron microscopy. A
review of existing data in copper was published by Mughrabi [20]. The comparison
is illustrated in Fig. 7 in terms of the normalized dislocation distance in subgrain
interiors lc/b =

√
3/ρc/b.

A comparison of the volume fraction of hard regions obtained in the present
work with the data published previously by Straub et al. [18] is given in Fig. 8.
The plot clearly demonstrates a relatively great scatter of this measurement. The
present data show that the tendency of fw to decrease with increasing temperature,
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Fig. 7. Comparison of the calculated normalized dislocation distance with the same dis-
tance measured by transmission electron microscopy as reviewed by Mughrabi [20].

Fig. 8. Temperature dependence of the volume fraction of hard regions. Comparison with
the data of Straub et al. [18].

which was ascribed to the transition from cell to subgrain structure [18] is not
continued at deformation temperatures T > 0.5TM, where TM is the absolute
melting temperature.

6. Conclusions

1. The long-range internal stress derived from X-ray measurements corre-
sponds to the amplitude of local internal stresses, while the internal stress evaluated
from the dip-test does not. A quantitative method for comparison of both internal
stresses is presented.
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2. Full compatibility of the presented values of the dip-test internal stress and
the X-ray long-range internal stress can be achieved when realistic values of the
dislocation interaction coefficient are used.

3. The mean distance of dislocations in subgrain interiors calculated from the
local internal stress is in agreement with the values found by transmission electron
microscopy investigations.

Acknowledgements

The investigation was performed within the frame of a Joint Austrian – Czech project
granted by the Österreichisches Ost- und Südosteuropa Institut. A partial support of
the Grant Agency of the Academy of Sciences of the Czech Republic within the grant
A2041202 is gratefully acknowledged. M. Z. and E. S. are grateful to the Austrian Science
Foundation (FWF) that provided finances within project P12945.

REFERENCES

[1] HANSEN, N.—HUANG, X.—HUGHES, D. A.: Mater. Sci. Engng., A317, 2001, p. 3.
[2] CAILLARD, D.—MARTIN, J. L.: Acta Metall., 30, 1982, p. 791.
[3] UNGÁR, T.—MUGHRABI, H.—RÖNNPAGEL, D.—WILKENS, M.: Acta Metall.,

32, 1984, p. 333.
[4] AHLQUIST, C. N.—NIX, W. D.: Scripta Metall., 3, 1969, p. 679.
[5] DOBEŠ, F.—ZVEŘINA, O.—ČADEK, J.: J. Test. Eval., 14, 1986, p. 271.
[6] UNGÁR, T.—GROMA, I.—WILKENS, M.: J. Appl. Cryst., 22, 1989, p. 26.
[7] GROMA, I.—UNGÁR, T.—WILKENS, M.: J. Appl. Cryst., 21, 1988, p. 47.
[8] WILKENS, M.: Phys. Stat. Sol. (a), 2, 1970, p. 359.
[9] WILKENS, M.: Phys. Stat. Sol. (a), 104, 1987, p. K1.

[10] MÜLLER, M.—ZEHETBAUER, M.—BORBÉLY, A.—UNGÁR, T.: Z. Metallkde.,
86, 1995, p. 827.

[11] MUGHRABI, H.: Acta Metall., 31, 1983, p. 1367.
[12] TAKEUCHI, S.—ARGON, A. S.: J. Mater. Sci., 11, 1976, p. 1542.
[13] MUGHRABI, H.: Phys. Stat. Sol. (a), 104, 1987, p. 107.
[14] SEDLÁČEK, R.: Scripta Metall. Mater., 33, 1995, p. 283.
[15] LI, J. C. M.: In: Dislocation Dynamics. Eds.: Rosenfield, A. R., Hahan, G. T., Be-

ment, A. L., Jaffee, R. I. New York, McGraw-Hill 1968, p. 87.
[16] SEEGER, A.: Encyclopaedia of Physics. Vol. 7/2. Berlin, Springer Verlag 1958.
[17] LAVRENTEV, F. F.: Mater. Sci. Engng., 46, 1980, p. 191.
[18] STRAUB, S.—BLUM, W.—MAIER, H. J.—UNGÁR, T.—BORBÉLY, A.—REN-

NER, H.: Acta Mater., 44, 1996, p. 4337.
[19] MUGHRABI, H.: Mater. Sci. Engng., A85, 1987, p. 15.
[20] MUGHRABI, H.: In: Constitutive Equations in Plasticity. Ed.: Argon, A. S. Cam-

bridge, Mass., MIT Press 1975, p. 199.

Received: 25.11.2002
Revised: 30.1.2003


