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EXPERIMENTAL VERIFICATION
OF THERMODYNAMIC THEORY
OF ELASTO-PLASTIC DEFORMATION

STEFAN BARTA', PETER DIESKA', JAN BOSANSKY?, TIBOR SMIDA?

The stress-strain curves were measured by the method of the uniaxial tension test.
The theoretical stress-strain relation derived on the basis of generalized thermodynamics
was tested by experiments. The material constants were determined from the best fitting
of the experimental data with the stress-strain relation. It is shown that the material
constants are temperature dependent.
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EXPERIMENTALNE OVERENIE TERMODYNAMICKEJ
TEORIE ELASTICKO-PLASTICKEJ DEFORMACIE

Boli namerané napitovo-deformac¢né krivky metédou jednoosového naméhania. Ex-
perimentalne bol otestovany napitovo-deformaény vztah odvodeny s pouzitim zovSeobec-
nenej termodynamiky. Modelové parametre boli urcené optimalnym zostiladenim teérie s
experimentom. Bola zistend teplotnda zéavislost tychto parametrov.

1. Introduction

One of the distinct features of plastic deformation is its irreversibility. The
plastic deformation represents an inherently irreversible process. In classical ther-
modynamics it is assumed that if the process is sufficiently slow it can be treated
as a reversible one. This assumption is wrong in the case of the plastic deformation
process, because no matter how slow the process is, the plastic deformation remains
irreversible. From this it follows that the plastic deformation can be described only
on the basis of non-equilibrium thermodynamics. The further distinct feature of
plastic deformation is that the deformation process cannot be described by the
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inelastic strain tensor €, only. It is worth to mention that the total strain tensor
is the sum of elastic and inelastic (plastic) part of strain tensor

€= €x ¥ €p; (1)

where €. is the elastic part of strain tensor and €, is the plastic part of strain
tensor.

In this paper, whenever the strain tensor becomes part of the development, we
will be restricted to its first approximation, i.e. to the infinitesimal strain. Now, it is
generally accepted that the internal state of a plastically deformed body is described
not only by the standard state variables but also by the internal state variables.
If extra state variables are introduced then we speak of extended or generalized
thermodynamics. The internal state variables can be scalar (chemical reaction,
relaxation phenomena and inelastic hardening) [1-4] and [5], vectors (dielectric
and magnetic relaxation phenomena) [6-9] and tensors (plastic deformation) [10,
11] and [12].

In the case of plastic deformation the internal state variables describe, on the
macroscopic level, the change of the dislocation arrangement. It is well known that
the plastic deformation of metals and many other crystalline materials is accom-
plished through the motion of a line shaped crystal defects called the dislocations.
The dislocation arrangement is determined by the distribution function. From the
theory of probability it is known that the distribution function is equivalently de-
fined by all its statistical moments. The statistical moments, on the macroscopic
level, can play the role of internal state variables. According to this statement
Drucker has surmised that the number of internal state variables should be in-
finite. But Kroner concludes in his paper [14]: “It is doubtless not possible to
prepare two specimens of the same material which have exactly the same micro-
scopic dislocation arrangement. Nevertheless, one observes a good reproductibility
in many types of plastic experiments. From this it can be concluded almost with
certainty that one does not need the high-order moments of the dislocation ar-
rangement for a reasonable plasticity theory. How far one has to go in the order of
the moments will depend on the experiment itself”. In [4] it was assumed that the
internal state of the solid is described by only one tensorial state variable. In the
case of the simple uniaxial tension test, it is sufficient to consider a scalar internal
state variable. Later on it will be shown that the experimental stress-strain curves
can be interpreted by the theory, which uses only one scalar internal state variable.

2. Theory

In [5] on the basis of generalized thermodynamics, there were derived the
following phenomenological equations:
d .
uep K 5 K "o
dt 1+7]0 1+7}01—27}0

oT — AT (2)
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and
da
— = Ao — Bf, 3
- 8 (3)
where o is the symmetric Cauchy stress tensor, a is the internal state variable, 3
is the affinity conjugate to the internal state variable a, K,n9, A and B are the
material constants, which will be determined from the experiment, and Z is the
unit tensor.
Equations (2) and (3) describe the plastic deformation. The deformation pro-
cess is composed of two regions. The first one is the elastic one in which the
deformation process is described by the Hooke’s law

o =B e, (4)

where C* is a fourth order elastic compliance tensor. The second one is the elasto-
-plastic region. We will assume that in the second region the elastic and plastic
deformation simultaneously take place. These two regions are separated by €1
and o011c in the case of the uniaxial tension test. In the first region there may
exist also a non-linear deformation process but we will not consider this type of
deformation. The possibility of neglecting the non-linear deformation will be proved
by comparison of theoretical and experimental results. In [5] from Egs. (2) and (3)
for the uniaxial tension test, where a circular cylinder was subjected to a uniform
axial tension o1; # 0 and all other o;; = 0, the following equation was derived:

d2 d
dj;11 + (Bvy + EH) Z;l + Evy(HB — A?)o11 = EByvs, (5)
where

= —dell = const (6)

T T K

K 1-mn
= e 7
1+mn01—2n )

vy is the material constant and E is the Young’s modulus. In this case the Hooke’s
law has the form

o11 = E€11. (8)

The solution of Eq. (5) is as follows:

o11(t) = D + CreM(t710) 4 Oyera(t=to), (9)
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where
Ao =—& *6&, (10)
B=g W
&= w, (12)
& = \/%(By2 - BH) + B, (13)

where tg is the time of beginning of plastic deformation. A; o are the roots of the
characteristic equation

A’ + (Bvy + EH)A + Evy(HB — A?) = 0. (14)

The constants C; and C> are determined from the initial conditions. For ¢t = ¢,
011(to) = o11c and from Hooke’s law it follows

doyy
— = E~. 15
dt t=to v ( )

Applying these initial conditions we obtain
Ch = — By — \o(o11e — D) (16)
1—)\1_)\27 2(011¢ )
1

CQ = )\1(0‘116 = D) == E’y (17)

A1 — Ag

d .
Integrating % = ~ one obtains ¥(t — tg) = €11 — €11, where €11 = €11(to)-

Introducing the last relation into (9) we obtain the stress-strain relation

€

011 = D + CpeM BT | e T (18)

Relation (18) will be tested by comparison with the experimental data.
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3. Comparison of theoretical and experimental results

For the test of all assumptions, which have been made through the derivation of
the stress-strain relation, we have measured the stress-strain curves of some chosen
alloyed steels. The measurements were done on the tensile testing machine Schenk
PLX using the method of the uniaxial tension test. The permanent elongation
was chosen ¥ = 10 °mm-s~'. The initial length of all samples was Iy = 40 mm.
The samples had the circular form and were subjected to a uniform axial tension,

o011 # 0 and other o;; = 0. All experiments were done at the condition that

d 1dl
S~ 4, where y = —— =10"¢ 71,
lo dt
The composition of the individual steels is presented in Table 1. The samples 1
and 3 were heat-treated but sample 2 was not. The relevant values of the material

constants are presented in Table 2.

Table 1
Sample Nr. 1,2 3
Type of steel 15CH2NMFA STN15121
C [wt.%) 0.13+0.18 0.1+0.18
Mn [wt.%)] 0.4+0.7
Mo [wt.%] 0.520.7 0.4=0.6
Ni  [wt.%] 1.0+1.5
Cr  [wt.%] 1.8+2.30 0.7+1.3
Si [wt.%)] 0.17+0.37 0.15+0.35
P, S [wt.%] max. 0.02 max. 0.04
Sn  [wt.%) max. 0.3
Vo [wt.%] 0.1+0.12
As  [wt.%] max 0.04

From the best fitting of the experimental data with relation (18) we have ob-
tained the values of the parameters C;, Ca2, A1, A2, 011¢, and E, which are presented
in Table 2. With the help of these parameters we have calculated the material
constants D, H, Bvs, and A%vs according to relations

D =011 —C1 = Cy, (19)

D AL+ Ay
e -

H = (20)




KOVOVE MATERIALY, 39, 2001, &. 3 195
Table 2
Sample Nr. 1 2 3
T [°C] 20 500 20 500 20 500
Mx10® [s71] -0.340 | —0.237 | —1.462| —0.936 | —0.296 —0.787
Ao x 10°  [s7'] | —16.14 | —21.29 —5.389| —18.34 —0.6273 | —14.62
Ci [MPa]|—181.0 |—143.5 |-133.8 |-173.6 |-—648.6 —161.4
Cs [MPa]|—799.3 |—551.5 —33.82 | —41.92 [-296.0 —298.7
Ti1c [MPa]| 280.9 321.1 470.4 299.4 277.7 385.4
Ex107° [MPa] 1.906 1.515 1.974 1.702 1.911 1.706
H x 10° 0.725 0.135 6.390 3.526 1.542 2.129
[MPa™'.s7!]
Bry x 105 [s71] 36.34 33.87 25.46 51.95 0.7634 56.98
A%y, x 1013 0.2458 0.8437| 12.28 8.231 0.02054 5.388
[MPa~!.572]
Bl/2 = —(Al + Az) - EH, (21)
and
A%vy = Bus(H — 1), (22)

D

These relations were derived with the help of relations (7), (8), (9), (10), (11), (12),

(16) and (17).

The values of the parameters D, H, Buy, and A%v, are presented in Table 2.
The stress-strain curves of 15CH2NMFA (heat-treated), 15CH2NMFA (not heat-

treated) and STN15121 (heat-treated)
are depicted in Figs. 1, 2 and 3, respec-
tively. The measurements were done
at temperatures 20°C and 500°C. The
temperature 500°C was reached after 45
min. The sample was kept at 500°C 15
min before the experiment. From the
Figs. 1, 2 and 3 it is seen that the the-
oretical stress-strain relation describes
quite well the experimental stress-strain
curves. The material constants are
dependent on the temperature. The
Young’s moduli decrease with increas-
ing temperature. In our model the
threshold stress o11¢, at which the plas-
tic deformation begins, has an interest-
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Fig. 1. Stress-strain curves of sample 1

(heat-treated steel).
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Fig. 2. Stress-strain curves of sample 2 Fig. 3. Stress-strain curves of sample 3
(heat-untreated steel). (heat-treated steel).

ing temperature behaviour. Plastic deformation observable at the macroscopic
level results from the motion of dislocations through the material. The motion
of dislocations takes place in the slip-planes. Different slip-planes have a different
orientation and, therefore, in the case of the uniaxial tension test the stress in
the slip-planes is different. There is a certain slip-plane, the orientation of which
is optimal according to the external tensile load. In this slip-plane there is the
largest stress compared to the other slip-planes. When an external force is grad-
ually applied, the stress in the optimal slip-plane will be the first one which gets
the threshold value. So from this moment the plastic deformation begins. If the
heights of barriers occur in a large range, stress-strain curves are steep, so this
is the case of heat-treated material as it is seen from Figs. 1 and 3. But when
the range is narrow the stress-strain curves are flat as it is seen in Fig. 2. From
the Table 2 it is seen that 011, = 470 MPa in the case of a not heat-treated steel
and o011 = 280 MPa in the case of the heat-treated steel. From this fact we can
conclude that the minimal height of the barrier in the optimal slip-plane in the
case of the not heat-treated steel is 1.7 times higher than in the case of the heat-
treated steel. With the increasing temperature the heights of barriers decrease.
Due to this fact, the stress-strain curves are situated lower at 500°C than at 20°C.
But the situation with the minimal value of the height of the barrier in the cases
of not heat-treated steel differs from the heat-treated ones. As mentioned above,
the minimal value of the height of barrier is 1.7 times higher in the case of not
heat-treated steel than in the case of heat-treated one. Therefore in the case of
not heat-treated steel all heights of barriers decrease with increasing temperature
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and, therefore, o1y, decreases. But in the case of heat-treated steel the barriers
of minimal values of the heights gradually disappear with increasing temperature
and, therefore, o1, increases with increasing temperature. The similar behaviour
of the threshold stress was observed also in [5]. Generally, it is accepted that the
yield stress decreases with the increasing temperature. The yield stress is defined
at the 0.2% of the permanent €;;. From the Table 3 it is seen that the above
statement is fulfilled.

Table 3

Type of material Temperature [°C] Yield stress [MPa]
20 734
15121 500 656
15CH2NMFA 20 872
heat treatment 500 784
15SH2NMFA 20 603
without heat treatment 500 484

4. Conclusions

— The theoretical stress-strain relation was tested by experiments.

— The stress-strain curves were measured on CrMo steels.

— From the best fitting of the stress-strain curves the values of the material
constants were determined.

— It was found that the material constants depend on the temperature.

— The threshold stress at the material without heat treatment decreases with
increasing temperature. On the contrary, the threshold stress at the material with
heat treatment increases with increasing temperature.
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