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EFFECTIVE YOUNG’S MODULUS
OF QUASILAYERED SPECIMENS: COMPARISON
OF EXPRESSIONS CORRESPONDING TO TENSILE
TESTS AND DYNAMICAL RESONANT METHODS

MIRIAM KUPKOVA, MARTIN KUPKA

General expressions for effective Young’s modulus of quasilayered specimens were de-
rived for model situations corresponding to statical tensile tests and dynamical resonant
tests. These expressions enable us to evaluate the effective-modulus values which would
be measured if the quasilayered specimens were undergone tensile tests and dynamical
resonant tests. General expressions for effective Young’s modulus based on sample re-
sponses (elongation, vibration) occuring in the plane of quasilayers, are equal for the both
testing-method sets. On the other hand, general expressions as well as most of particular
values for the effective Young’s modulus, based on the sample responses perpendicular
to quasilayers, differ from each other and from those for “in plane” modulus. So, for a
design use, the modulus value determined by means of the method compatible with the
application intended should be chosen.

EFEKTIVNY YOUNGOV MODUL PRUZNOSTI
KVAZIVRSTEVNATYCH VZORIEK: POROVNANIE VYRAZOV
ZODPOVEDAJUCICH TAHOVYM SKUSKAM
A DYNAMICKYM REZONANCNYM METODAM

Odvodili sme v8eobecné vyrazy pre efektivny Youngov modul pruznosti kvazivrstev-
natych vzoriek pre modelové situicie zodpovedajice statickym tahovym sktSkam a dy-
namickym rezonanénym skuskam. Tieto vyrazy nam umoziuji vypodéitat hodnoty efek-
tivneho modulu, ktoré by sme namerali, ak by sme podrobili kvézivrstevnaté vzorky
tahovym skt$kam a dynamickym rezonan¢nym sktSkam. VSeobecné vyrazy pre efektivny
Youngov modul, zaloZzené na odozvach vzorky (predfZenie, vibracia) v rovine kvazivrstiev,
st rovnaké pre oba stibory skSobnych met6éd. Na druhej strane, vSeobecné vyrazy, ako aj
vicsina konkrétnych hodndt pre efektivny Youngov modul, zaloZené na odozvich vzorky
kolmych na kvézivrstvy, sa navzdjom odliSuji a odliSuja sa aj od vyrazov a hodnét pre
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moduly ,v rovine“. Pri projektovani je preto potrebné vybrat hodnotu modulu urdent
pomocou metdédy kompatibilnej s pldnovanym pouzitim vyrobku.

Key words: effective Young’s modulus, quasilayered specimens, tensile test, dynamic
resonant method

1. Introduction

Moduli of elasticity represent one of the important mechanical characteristics
of materials. Acquaintance with moduli values is necessary, for example, for de-
signing various structural parts as the response of a particular part to the action
of external forces is largely determined by the elasticity-modulus values [1]. On the
other hand, various sample responses (elongation, bending, vibration, etc.) to the
given external stimuli can be used for determining the elasticity moduli and serve
as a physical basis for a variety of modulus-determining methods.

In the case of homogeneous samples, the elasticity-modulus values obtained by
means of different testing methods are equal (except for, of course, the measuring
errors), regardless of the sample geometrical shape and the method being used. The
values determined in this case are equal to the modulus of elasticity of material
the samples are made of.

Recently, intentionally macroscopically heterogeneous materials and parts are
increasingly used (composite materials, powder-metallurgy parts with specially
modified surface, etc.). For working reasons, it is necessary to evaluate the response
of such parts to various external stimuli, too. Therefore, a number of effective mod-
uli of elasticity is introduced [2—4]. Effective modulus is a modulus of material of
a hypothetical homogeneous component of the same size and shape as the tested
heterogeneous one, which provides the same response to a particular stimulus as
the real heterogeneous component. The effective modulus, understood in the above
mentioned sense, is a function of moduli of particular materials constituting the
component as well as it depends also on the distribution of particular materials
within the component and on a geometrical shape of the component as a whole.

Therefore, when different modulus-determining procedures are applied to a
heterogeneous sample, different values of the effective modulus are obtained. Thus,
when we are dealing with heterogeneous materials or components, the concept of
effective modulus as well as values provided by particular tests should be used
carefully. One has to keep in mind which procedure (test) was used for determining
a particular value of effective modulus and for which kind of practical or research
situations this value can be used.

In the paper presented the effective-modulus differences are illustrated by ex-
pressions theoretically derived for effective Young’s moduli of a quasilayered bar.
These expressions enable us to evaluate effective Young’s modulus values which
would be provided by two different testing methods: statical tensile test and a dy-
namical resonant method. The general expressions for effective Young’s moduli are
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presented as well as some particular Young’s moduli for particular situations (bars
with a special distribution of (quasi) layers) are evaluated.

The results confirm the statement that for a heterogeneous bar different testing
methods can provide different effective-modulus values. Thus, some care is needed
to choose the correct modulus value for a given component application, i.e., it is
necessary to choose the modulus value determined by means of a testing procedure
compatible with the application intended for a given part.

2. General theoretical expressions for effective Young’s moduli of
quasilayered bars

To obtain expressions for effective Young’s modulus in a theoretical way, a rect-
angular bar of height H, width W, and
length L is considered as a theoretical
model of the sample undergoing partic-
ular tests. The z-axis of a co-ordinate
frame is oriented along the height of the
bar (Fig. 1).

I ‘ | l | | | , J ' H L Properties of material of the bar

H (material Young’s modulus E, mass

density p) are assumed as varying (con-

tinuously or step-likely) only along the
height of the bar. So, the Young’s mod-
ulus E(z) and density p(z) are func-

Fig. 1. Schematic sketch of a quasilayered  tjons of the co-ordinate x only. Such a

bar being considered. bar is called a quasilayered one.

w

2.1 Effective Young’s moduli determined by tensile tests

Expressions for “tensile” effective Young’s moduli for our model bar can be
derived by slightly modifying procedures used for deriving the effective moduli for
a slab model of unidirectional composites [2, 3, 4].

Transverse modulus

A tensile stress o is applied in the direction of the bar height. In this cage, all
bar cross sections parallel to W L-plane experience equal stress o. Elongation di(z)
of a thin layer of original thickness dz, parallel to W L-plane and located at height
z, can be expressed as di(z) = odz/E(z). The total elongation of the bar in the
direction of height is obtained by integration of di(z) over the height of the bar.

In this case, the effective bar modulus in tension EY is defined by relation:

[ di(z)

o= E} 7
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Substituting proper relations and performing simple mathematical operations, we
have for EY expression as follows:

% 1 (7 dz -
Ef(ﬁ/o m) | W

For actual layered bar E* obtains the form known as “Inverse Rule of Mixtures”.

Longitudinal modulus

If the bar is strained in the direction of length L (or width W), the strains € in
all quasilayers (bar cross sections parallel to W L-plane) are equal and are the same
as the bar strain. The force df(z) borne by a thin layer of thickness dz, parallel to
W L-plane and located at the height z, can be expressed as df(z) = eE(z)Wdz.
The total force borne by the strained bar is obtained by integration of df(z) over
the bar height.

In this case, the effective bar modulus in tension Eﬁ is defined by relation

Jdf(x)
WH

= Eﬁs.

Substituting proper relations and performing simple mathematical operations, we
have for Eﬁ the following expression:

H
B = % /0 Blz)dz. @)

For an actual layered bar Etl obtains the form known as “Rule or Law of Mixtures”.

Rule of mixtures is often used for determining the effective modulus of multiphase
materials.

2.2 Effective Young’s moduli determined
by a dynamical resonant method

In this paragraph we concentrate on the effective Young’s modulus determined
by means of a dynamical resonant method [5], using flexural vibration of a bar being
tested. When the method is applied to our model quasilayered bar (Fig. 1), the ef-
fective Young’s modulus values are evaluated by means of the following expressions
[5):

— for vibration in the H L-plane:

2
o1

TI_Qa (33‘)

vV = 0.94642p,, L
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— for vibration in the W L-plane:

f2
v o 4/l
i = 0.94642p5, L* . (3b)

Pav is the averaged bar mass density. f1 and f| are experimentally measured fun-
damental frequencies of our quasilayered bar, undergoing transverse vibration with
free ends in the H L-plane and W L-plane, respectively.

To evaluate the moduli EY, E[ in a theoretical way, we have to calculate the
fundamental frequencies f,, f) of our model bar as functions (functionals) of the
material-property distribution within the bar.

As a transverse vibration of a quasilayered bar is considered, we have to modify
the Bernoulli-Euler beam theory [6] (which provided relations (3a,b)) to allow for
the quasilayered structure of the bar under consideration.

Vibration frequencies are obtained by solving the equation of motion for a bar
neutral fibre [6]. The equation of motion can be derived by means of the Hamilton’s
principle of minimal action. Lagrange’s function, occurring in the expression for
action, consists of the kinetic-energy part and the potential (elastic)-energy part.

Required elastic energy is determined by means of the strain and stress tensor
fields within a bent quasilayered bar. The geometry of deformation of material
fibres and planar bar cross sections in a bent quasilayered bar is similar to that in
a homogeneous bent bar. That is, the elongation (contraction) of a material fibre in
a given point of cross section of a bent bar increases linearly with increasing distance
of a point considered from the cross-section neutral axis. The cross-section neutral
axis is perpendicular to the bending plane, and its position within the cross section
is determined by conditions [[s E(h)hdhdw = 0 (bending in the H L-plane) or
[Js E(h)wdhdw = 0 (bending in the W L-plane). Integration runs over the cross
section S. Quantities h and w are distances of a given area-element dhdw from the
cross-section neutral axes for bending in the H L-plane and W L-plane, respectively.

Taking into account above-mentioned character of deformation as well as a
heterogeneous distribution of material Young’s modulus value along the cross sec-
tion, the expression for the elastic energy can be constructed. The resultant elastic
energy of a bent quasilayered bar, if expressed in terms of the neutral-fiber curva-
ture, differs from the elastic energy of a bent homogeneous bar only in a prefactor,
where expressions [ E(h)h*dhdw (bending in the H L-plane) or [[¢ E(h)w?dhdw
(bending in the W L-plane) play the role of the flexural rigidity of the quasilayered
bar.

The kinetic energy of a quasilayered bar, if expressed in terms of the velocity
of the neutral-fiber transverse motion, differs from that of a homogeneous bar only
in the prefactor [[s p(h)dhdw instead of HW po.
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These differences lead to analogous changes of corresponding quantities in the
equation of motion and relation for natural frequencies of a homogeneous bar when
rederived for a quasilayered bar.

Transforming relevant quantities from a hw-frame to the co-ordinate frame of
Fig. 1 and substituting calculated frequencies f,, f; into Egs. (3), the following
expressions for “transverse vibration” effective Young’s moduli are obtained:

— for vibration in the H L-plane, i.e. perpendicular to quasilayers

( /0 " E(z)zdz) 2]

EY = 12 " 2
1= ﬁ : E(:E)z dz — H ) (4)
/ E(z)dz
0
— for vibration in the W L-plane, i.e. parallel to quasilayers
1 H
= E/o E(z)dz. (5)

Expressions for Eltl and El‘l’ are equal. Expressions for EY and EY are different
from Eﬁ, Ey and from each other.

3. Some particular examples of effective Young’s moduli

To illustrate the differences among effective Young’s moduli determined by
different testing methods, the general results of the above chapter are employed
for evaluating the effective moduli for bars with some special distributions of ma-
terial Young’s modulus along the bar

cross section.

As an example of a bar with a step- Hs,
like distribution of material Young’s
modulus (actual layered bar), a bar con- He
sisting of three layers is considered. Two Hs4

outer layers are of thickness Hgy =

vs1H and Hss = vsoH and material Fig. 2. Schematic sketch of the cross sec-
Young’s moduli within these layers are tion of an arbitrary three-layer bar.
Es, and Ess, respectively. The central

layer is of thickness Hg = vgH and with a material Young’s modulus Eg (Fig. 2).
v;’s are the volume fractions occupied by particular layers, i.e., the ratios of the
volume of the i-th layer to the volume of the whole bar.
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For such three-layer bar the expressions for effective Young’s moduli are as
follows:

l‘l, = E'ﬁ = vs1Es1 + vgER + vso Egso, rule of mixtures (6a)

= Es1 Bp By inverse rule of mixtures (6b)
vs1Ep Ess + vpEg1 Es2 + vs2Es1 Ep’

B — A+ Bs1B+ Bsi,s2 +Bpsa +C
¥ = ! (6¢)
vs1Es1 + vBEp + vsa2 Esa

A =v§ B3 + v B + V5, ES,,
B;; = (40} + by + 41/J-2)Vi1/jEiEj,
C = 12vs1vpvsa Esy Ess,

vs1 +vB +vs2 = 1.

For a symmetric three-layer bar (Es; = Esy = Es; vs; = vsy = 0.5v5)
expressions (6) transform to the form:

|‘|' = Eﬁ =wvsbs + I/BEB, (7&)
EsEg

Eft = —2— 7b

- vsEg + v Eg ’ ( )

Y = Es + (Ep ~ Es)vd. (7c)

In Fig. 3, the effective Young’s moduli for a symmetric three-layer bar are presented
as functions of the outer-layers volume fraction vg for the situation Eg/Ep = 0.7.
The differences in values of particular moduli are apparent.

For a two-layer bar (vg'= 0) expressions (6) reduce to the form:

l‘l’ = Eﬁ = vs1Eg1 + vse Esa, (8a)

Es1 Egso
Et = " 8b
L7 ug1Esy + vs2Eg: &k

4
v§, Bd; + 2(2 — vs1vse)vsivs2 Es1 Esa + vg, ES,

Ef =
vs1Es1 + vsa Eso

(8¢c)

In Fig. 4, the effective Young’s moduli for a two-layer bar are presented as functions
of the volume fraction vg; of one of the layers for the situation with Es; /Egs = 0.7.
Also in this case the differences in modulus values are apparent.
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Fig. 3. Normalized effective Young’s mod-

uli vs. the outer-layers volume fraction vs.

The data presented were calculated for a

symmetric three-layer bar with the outer

layer-to-central layer Young’s moduli ratio
Es/Eg equal to 0.7.

Fig. 5. Schematic sketch of the material

Young’s modulus distribution along the

height of the cross section of a bar with

properties varying linearly with a distance
from the surface.

Fig. 4. Normalized effective Young’s mod-
uli vs. the volume fraction vs; of one of the
layers. The data presented were calculated
for a two-layer bar with the layers Young’s
moduli ratio Esi1/FEs2 equal to 0.7.

Es1 E

As examples of bars with a continuous distribution of the material Young’s
modulus, a bar consisting of two segments with properties varying linearly with
a distance from surfaces (Fig. 5) and a bar with a symmetric quadratic modulus

distribution are considered.

In a two-segment bar, the material Young’s modulus changes linearly from the
value FEg; on one surface to the value Eg on some plane inside the bar at a distance
Hg, = hs1 H from the surface considered, and then it changes linearly, in general
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with a different slope, from the value Ep to the value Egs on the opposite surface.
For a bar with such material-modulus distribution, effective Young’s moduli
are as follows:

Esy + Ep Egss + Ep

Ej = Eﬁ = hs1 5 + hs2 5 5 (9a)
In EES—I In % =1

E' = |h B_+h b , 9b

+ S'Es1 —Ep ' Es2—Ep (3b)

v _ Ksi1+ Nsis2 + M + Ns2s1 + Ks2 (90)

L 7 3[hsi(Es1 + Eg) + hsa(Ess + Eg)]’
K; = h{(E? + 4EEp + E}),
Ni; = 3h}hi(Ep + 3E;)(Es + Ej),
M = 4hZ,h3,(Ep + 2Es;)(Ep + 2Ess),
hst + hga = 1.

For a symmetric two-segment bar (Es; = Eso = Es, hsi = hsa = 0.5) with
linearly varying material properties the expressions (9) reduce to the forms:

Es + Ep

i =B =12, (10a)
Es — Eg
B == (10b)
ln Eg
E
B =28 Z3ES (10¢)

In Fig. 6, normalized effective Young’s moduli for a symmetric two-segment bar
are presented as functions of the ratio Es/FEg. In this case, the values of modulus
Ef are almost equal to values of moduli Ej = Ej for all values of the ratio Es/Ep
from the interval considered. But the values of EY still differ from the others.
For a bar consisting only of one segment with linearly changing material
Young’s modulus (hs; = 0, Eg = Eg;), expressions (9) reduce to the forms:

Esi + Ess
W e t =
Esy — Es;
E} = _2@_, (11b)
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EY =

_ E§, +4Bs1 Esp + ES)

(11c)

3(Es1 + Es2)

For the second “continuous” example, a bar with a symmetric quadratic ma-
terial Young’s modulus distribution along the bar height (with Young’s modulus
value Es on the surfaces and ER in the centre of the bar cross section), the effective

Young’s moduli are as follows:

Es + 2Eg
v _ @t
4 /T
EB(EB — ES) for FEs < Ep,
argt h\/—EB ~ &g
Bt g
Ej_ = { EB for Es = EB, (12b)
Y EB(ES —Ep) for Es > Eg,
- \/M
i V>N
3Es + 2F;
v o= vlg T 258, (12¢)
)
1.3 1.3
1.2 4 1.2
11+ 114
o o 4
w H
= - S ~
uF 1.0 uF 1.0
0.9 0.9 4
{ ]
0.8 1 0.8 1
o7 +—TF——F——TF——71— .7 +——m 77—
07 08 09 10 11 12 13 07 08 09 10 11 12 13
Es/Eg Es/Es

Fig. 6. Normalized effective Young’s mod-
uli vs. surface-to-centre material Young's
moduli ratio Es/Eg. The data presented
were calculated for a symmetric bar with
the Young’s modulus continuously varying
along the bar height, with values propor-
tional to a distance from the bar centre.

Fig. 7. Normalized effective Young’s mod-
uli vs. surface-to-centre material Young's
moduli ratio Es/Eg. The data presented
were calculated for a symmetric bar with
the Young’s modulus continuously varying
along the bar height, with values propor-
tional to the square of a distance from the
bar centre.
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In Fig. 7, normalized effective Young’s moduli for a symmetric ,quadratic bar
are presented as functions of the ratio Es/Eg. Also in this case only the values of
modulus EY are visibly different from the others.

4. Conclusion

In the paper presented here we referred to the differences in the effective
Young’s modulus values which the different testing methods could provide if applied
to quasilayered rectangular-bar samples. In our approach, a quasilayered bar is a
heterogeneous one with a material Young’s modulus varying only in one transverse
direction, referred to as a bar height. The material Young’s modulus distribution
along the bar height can be continuous as well as a step-like one (actual layered
bars).

General mathematical expressions for effective Young’s moduli are derived.
These expressions enable us to evaluate the effective Young’s modulus values which
would be determined experimentally for a quasilayered bar by means of tensile tests
and dynamical resonant methods.

Two of the expressions obtained for effective Young’s moduli, one derived by
considering an elongation of a quasilayered bar strained in the direction parallel
to quasilayers and another derived by means of a natural frequency of the same
bar undergoing transverse vibration in the plane of quasilayers, are equal. But
another two expressions, one derived by means of the elongation of the same bar
strained in the direction perpendicular to quasilayers and another derived by means
of a natural frequency of the bar vibrating perpendicularly to quasilayers, formally
differ from each other and from the former.

These formal differences in particular mathematical expressions for effective
Young’s moduli can lead to visible differences also in numerical values evaluated
by means of these expressions. It is the case of our actual three-layer and two-
-layer bars (Figs. 3, 4), where the curves for EY and EY differ from each other and
from the curve for Ej = Eﬁ But for another bar configuration, the differences in
evaluated numerical values can be very negligible. It is the case of our model bars
with continuously varying properties (Figs. 6, 7), where the EY vs. Es/Eg curve
practically coincides with the Eltl’v vs. Es/Ep curve and only the EY vs. Es/Eg
curve is visibly different.

But in general, the tensile tests and dynamical resonant method (and, of
course, also another testing methods not considered in this paper) can provide
different values of effective moduli for the same quasilayered (or, in general, het-
erogeneous) specimen. Thus, some care is needed to choose the correct effective-
-modulus value (determined by a correct testing method) for particular component
applications.
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