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Abstract

Isothermal compressive experiments on a Ni-based superalloy were performed at strain
rates from 0.001 to 1 s−1 and temperatures between 920 and 1040◦C to study its high-
-temperature deformation. Utilizing the experimental data, a Long Short-Term Memory
(LSTM) model, optimized with the Particle Swarm Optimization (PSO) algorithm (LSTM-
-PSO), was developed to characterize this behavior. The LSTM component of the model ef-
fectively handles the complexity and nonlinear characteristics of time-series data, while the
PSO component performs parameter optimization, enhancing the model’s accuracy and gen-
eralization capability. The model’s inputs include deformation temperature, strain rate, and
true strain, with true stress as the output. A comparison of experimental and forecasted re-
sults revealed that the LSTM-PSO model accurately predicts high-temperature deformation,
achieving a correction coefficient of 0.9988 and an average absolute relative error of 1.16,
demonstrating superior performance compared to other advanced methods.

K e y w o r d s: hot deformation, Ni-based superalloy, Long Short-Term Memory (LSTM)
method, Particle Swarm Optimization (PSO) algorithm, constitutive model

1. Introduction

Ni-based superalloys are extensively employed in
essential components of aerospace engines and gas
turbines due to their superior mechanical character-
istics and excellent resistance to corrosion and oxi-
dation [1–3]. These components are commonly pro-
duced through hot die forging. However, the defor-
mation behavior of Ni-based superalloys at high tem-
peratures is highly complex [4–6]. Many researchers
have conducted studies focusing on model develop-
ment to understand better and predict the thermal
manufacturing process of these alloys, progressively
uncovering the mechanisms of microstructure evolu-
tion during hot deformation [7–9]. Processing maps
for Ni-based superalloys have been developed to assess
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power dissipation efficiency, identify regions of flow
instability, and optimize hot working conditions [10,
11]. Investigations into the dynamic recrystallization
(DRX) behavior of these alloys [12–14] have led to the
establishment of precise phenomenological and phys-
ically based constitutive models for predicting high-
temperature flow stress [15–17]. Jiang et al. [18] in-
troduced a cellular automaton model [19] to simu-
late grain growth in a powder metallurgy Ni-based
superalloy. Zhang et al. [20] and Lin et al. [21] ex-
plored interactions between recrystallization and the
precipitation/dissolution behavior of the δ phase, find-
ing that the δ phase promotes DRX nucleation dur-
ing hot deformation of Inconel 718 and GH4169 su-
peralloy. Furthermore, meta-dynamic recrystallization
(MDRX) behavior was investigated in a Ni-Cr-Mo al-
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loy, developing accurate MDRX kinetic and grain size
models [22].
Previous research has documented various metal-

lurgical phenomena that occur during the hot man-
ufacturing of Ni-based alloys [23, 24]. There is grow-
ing interest in constitutive models capable of accu-
rately forecasting material rheology by integrating
phenomenology, physical mechanisms, or intelligent
methodologies [25]. Based on empirical observations,
phenomenological constitutive models have been de-
vised to precisely forecast the true stresses of met-
als [26–28]. Nevertheless, the above models frequently
lack a strong physical basis [29]. Conversely, physi-
cally based constitutive models offer a detailed charac-
terization of deformation mechanisms across a broad
parameter range based on specific physical assump-
tions [30–32]. However, the intricate and nonlinear
nature of high-temperature deformation behavior in
alloys poses challenges for accurate true stress pre-
dictions. Intelligent models, including neural networks
[33], genetic algorithms [34], deep belief networks [35],
and reasoning systems [36], are proven effective in ac-
curately characterizing thermal deformation behavior
under complex conditions [37]. These models do not
depend on specific mathematical formulas and can
be easily developed using experimental data. Further-
more, leveraging its continuous learning capability, the
long short-term memory (LSTM) method excels in
creating precise input-output data mappings. Conse-
quently, LSTM has been effectively used to forecast
the true stress of composites and alloys [38, 39].
Despite extensive research on hot deformation be-

havior and microstructure evolution of typical superal-
loys, current constitutive models are still insufficiently
advanced. This study conducted isothermal compres-
sive experiments at various temperatures and strain
rates to examine the high-temperature deformation
of a Ni-based superalloy. An optimized Long Short-
TermMemory (LSTM) model, enhanced with the Par-
ticle Swarm Optimization (PSO) algorithm (LSTM-
PSO), was developed to characterize the alloy’s high-
temperature deformation. The predictive performance
of the LSTM-PSO model was validated by comparing
it with both phenomenological and physically based
models.

2. Experiments preparation

For this research, we used the same materials and
preparation methods as those described in the au-
thor’s previous research [40]. The original microstruc-
ture before deformation, demonstrated in Fig. 1, fea-
tures equiaxed grains with an average size of 73 µm.
Isothermal compressive experiments were carried out
on Gleeble-3500 at strain rates ranging from 0.001
to 1 s−1 and deformation temperatures between 920

Fig. 1. Original microstructure of the superalloy under in-
vestigation.

Fig. 2. Observed true stress-strain (TSS) curves for the
superalloy under investigation at diverse temperatures: (a)

920◦C and (b) 1040◦C [40].

and 1040◦C, resulting in a 70% reduction in specimen
height.
As illustrated in Fig. 2, it is noteworthy that the

true stress decreases with rising temperatures. Addi-
tionally, higher strain rates generally lead to increased
true stress. The reason for this behavior can be sum-
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Fig. 3. Typical structure network of LSTM model.

marized as follows: when the strain rate is low, more
time is provided for dynamic recrystallization (DRX)
behavior and supporting various dislocation move-
ments [41, 42].

3. Development of an LSTM-PSO model for
forecasting true stress

In this work, the LSTM, known for its capability
to forecast nonlinear stress-strain curves, is applied
to analyze the thermal compression behavior of the
Ni-based alloy under investigation. The typical archi-
tecture of the LSTM model includes input layers com-
prising variables T , ε, and ε̇, with the output layer de-
fined as σ, as depicted in Fig. 3. Based on the report
in [43] regarding the unique characteristics of thermal
stress-strain data for Ni-based superalloys, the same 2
hidden layers in the LSTM model are applied.
The LSTM model typically uses gradient descent

to find the global optimal solution, as illustrated in
Fig. 4. Forgetting gate, inputting gate, and outputting
gate are used to protect and control the cell state
to learn or forget information from time series data.
Specifically, the forgetting gate eliminates irrelevant
input data from the last cell state by [44]:

ft = σ1 (Wf [ht−1, xt] + b1) . (1)

Subsequently, the status of each cell is determined.
In this process, the sigmoid function (σi) of the input
gate is used for activation, deciding which informa-
tion needs to be updated. This information is then
passed on to the hyperbolic tangent activation func-
tion (tanh) for further processing. The formulae for it
and C̃ are expressed as follows [45]:

it = σ2 (W i [ht−1, xt] + b2) , (2)

C̃ = tanh (Wc [ht−1, xt] + b3) . (3)

Fig. 4. Data transmission within an LSTM unit.

Moreover, the input and forget gates are merged,
leading to an update in the cell state from Ct−1 to Ct.
The update equation for Ct is formulated as [45]:

Ct = ftCt−1 + itC̃t. (4)

Therefore, the information processed by the output
gate ot is updated by [45]:

ot = σ3 (Wo [ht−1, xt] + b4) . (5)

Eventually, by disposing of the activation function
(tanh), the subsequent hidden state of the output gate
is determined as [44]:

ht = ot tanh (Ct) , (6)

where Wo, Wf , Wi, and Wc denote the weights of the
output gate, forget gate, input gate, and candidate
gate, respectively. b1, b2, b3, and b4 are the biases of
the output gate, forget gate, input gate, and candidate
gate, respectively. [ht−1, xt] represents the input data.
It is normally known that the LSTM model can

effectively overcome the defects of vanishing gradients
and exploding gradients. However, several characteris-
tics, including susceptibility to falling into local min-
ima and the relatively limited convergence rate, sig-
nificantly affect the applicability of the LSTM model.
To improve the convergence speed and forecast ac-
curacy of the LSTM model, the PSO algorithm cou-
pling with the LSTM model (LSTM-PSO) is proposed
to reconstruct the thermal compression behavior. The
PSO algorithm is commonly characterized as an evo-
lutionary computing technology based on swarm intel-
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Fig. 5. Flowchart illustrating the PSO-optimized LSTM
neural network.

ligence. The PSO algorithm updates individual posi-
tions by tracking the individual extreme value (pbest)
and group best (gbest) values. Equations (7) and (8)
governing particle velocity and position are shown be-
low [44]:

νi =W × νi + c1 × rand ()× (pbesti − xi) +
c2 × rand ()× (gbesti − xi) , (7)

xi = xi + vi, (8)

where vi denotes particle speed, W describes the iner-
tia factor, c1 and c2 are learning indexes, rand() rep-
resents a random number between 0 and 1, and xi
depicts the present location of the particles.
Figure 5 illustrates the flow chart of the PSO-

-optimized LSTM neural network [46]. The parame-
ters for the LSTM network and the PSO algorithm
are initially set. Next, the fitness function, which eval-
uates the root mean square error (RMSE) between
forecasted and actual values, is established. Simul-
taneously, the individual best value (pbest) and the
group best value (gbest) are updated based on fitness
evaluations. The optimal outcomes are then utilized
in the LSTM model, followed by training to achieve
the final LSTM model results.
The experimental data is segmented into 24 sets,

with 18 sets allocated for training and the remaining
6 sets for model validation. Compliant with the de-
veloped LSTM network, the PSO particle matrix has
a length of 6 [46], representing the number of nodes
in the two hidden layers. The population size is fixed
at 14, with a learning factor of 4, and a maximum
iteration step of 120.
During the LSTM model training, a total of 1200

Fig. 6. Training process of the PSO-LSTM algorithm.

iterations are completed with amini-batch size of 128.
Moreover, a gradient threshold of 1 is defined, and the
training process utilizes the Adaptive Moment Esti-
mation (Adam) method. To facilitate a seamless train-
ing process, the model’s data is normalized:

X =
X −Xmin

Xmax −Xmin
, (9)

where X denotes the input value, and Xmin and Xmax
represent the maximum andminimum values, respec-
tively.
Following data input, the PSO-LSTM model per-

forms iterative calculations to reach convergence,
which is evaluated using a fitness function. Gener-
ally, the smaller values indicate better convergence.
As shown in Fig. 6, the 14th iteration, the best parti-
cle’s fitness value stabilizes at its lowest point (6.814).
Consequently, optimal LSTM parameters are deter-
mined: 280 nodes in hidden layer 1, 140 nodes in hid-
den layer 2, 186 nodes in the fully connected layer,
and a learning rate 0.018. These parameters are used
in the LSTM model to forecast flow stress.

4. Discussion

To evaluate the prediction accuracy of the LSTM-
PSO model, we performed detailed comparisons be-
tween experimental results and those forecasted by the
LSTM-PSO model, as well as other advanced consti-
tutive models. Similar to [40], we computed the cor-
rection coefficient (R) and average absolute relative
error (AARE) for the true stresses observed versus
those forecasted.
Aside from the established LSTM-PSO model

based on machine learning, constitutive models are
categorized into two types: physically based and
strain-compensated phenomenological models. There-
fore, models from these categories applicable to the
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Fig. 7. Comparative analysis of forecasted and observed TSS curves for the Ni-based superalloy under diverse deformation
temperatures: (a) 920◦C, (b) 950◦C, (c) 980◦C, (d) 1010◦C, and (e) 1040◦C.

studied material or similar materials were selected for
comparative analysis in this research.

(a) Physically based constitutive (PBC) model

The PBC model [30] can be written as follows:

σ =
[
σ2sat +

(
σ20 − σ2sat

)
e−Ωε

]0.5
(ε < εc)

σ = σrec − (σsat − σss) ·{

1− exp
[

−Kd

(
ε− εc
εp

)1.85]}

(ε ≥ εc)

σrec =
[
σ2sat +

(
σ20 − σ2sat

)
e−Ωε

]0.5

σsat = −11.30 + 1.07σp
σ0 = 14.86 lnZ − 478.07
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Ω = 2344.39Z−0.12208

σss = 0.74925σp
εp = 0.00188Z

0.11741

εc = 0.00160Z
0.11741

Kd = 0.00033Z
0.16103

Z = ε̇ exp
(
4.74× 105/8.31T) (13)

where σsat and σss represent the saturation and steady
stresses, respectively, σrec denotes the flow stress when
dynamic recovery is the primary softening mechanism.
ε demonstrates the true strain, while εc indicates the
critical strain for initiating dynamic recrystallization,
σ0 denotes the yield stress, Ω represents the coefficient
of dynamic recovery. εp refers to the absolute tem-
perature (K), and Z stands for the Zener-Hollomon
parameter.

(b) Strain-compensated phenomenological
constitutive (SCPC) model

The SCPC model [26] can be described by Eq. (14).
It incorporates additional parameters compared to the
PBC model, t, α, n, ln A, and Q represent material
constants, and V represents the original δ phase con-
tent. In this study, V is set to 0.
As depicted in Fig. 7, the true stresses forecasted

by the LSTM-PSO model are more accurate than
those for the other three models.

σ =
1
α
ln

⎛

⎝
(
Z

A

)1/n
+

((
Z

A

)2/n
+ 1

)1/2⎞

⎠

Z = ε̇ exp [Q/ (RT )]n

α =
{
[6.604,−4.635,−0.006] [1, ε, V ]T +

[ε, V ]

(
9.492− 4.559ε0.202+ 0.148ε
0.202 + 0.005V − 0.025 + 0.001V

)
·

[ε, V ]T
}
× 10−3

n = [3.475, 0.941, 0.204] [1, ε, V ]T +

[ε, V ]

(
1.815− 9.699ε0.202+ 0.489ε

−0.131 + 0.010V − 0.018 + 0.0004V
)
[ε, V ]T

lnA = [33.559,−4.965,−2.009] [1, ε, V ]T +
[ε, V ]

(
8.855 + 21.349ε2.466− 6.805ε
2.466− 0.394V0.660− 0.039V

)
[ε, V ]T

Q = [412.647,−61.455,−21.299] [1, ε, V ]T + [ε, V ] ·(
127.928+ 167.934ε27.795− 75.833ε
27.795− 4.320V6.896− 0.404V

)
[ε, V ]T (14)

Significant errors in forecasted stress are observed
for the PBC and SCPC models at high strain rates
(1 and 0.1 s−1), attributed to the overestimate of the
work-hardening behavior [47]. Furthermore, the com-
parison of predicted and observed true stresses is de-
picted in Fig. 8, showcasing the superior predictive

Fig. 8. Correlation between the observed and forecasted
true stresses.

Ta b l e 1. Evolution indexes of PBC, SCPC and LSTM-
-PSO models

Method R AARE (%)

PBC 0.9870 2.93
SCPC 0.9904 2.38
LSTM-PSO 0.9988 1.16

accuracy of the LSTM-PSO model. A side-by-side
evaluation of the predictive performance between the
LSTM-PSO model and the other three models is de-
tailed in Table 1, which includes R and AARE values.
The R for the PBC, SCPC, and LSTM-PSO models
are 0.9870, 0.9904, and 0.9988, respectively, indicating
a strong correlation between forecasted and observed
results. Moreover, the AARE of the LSTM-PSOmodel
is 1.16%, significantly lower than that for the other
three models, highlighting the higher prediction ac-
curacy of the LSTM-PSO model. Consequently, the
LSTM-PSO model provides a more precise descrip-
tion of the high-temperature deformation behavior of
the Ni-based superalloy studied.
Typically, in predicting material properties, due to

the significant relationship between these properties
and physical phenomena such as phase transitions,
models developed based on the underlying laws and
mechanisms tend to perform comparably to advanced
deep learning methods that do not account for fun-
damental physical changes. In this study, the LSTM-
PSO approach demonstrates distinct performance ad-
vantages primarily due to the following factors: (1)
PSO can automatically optimize the hyperparameters
of LSTM, thereby enhancing its learning capability
and enabling more efficient capture of key informa-
tion in the stress-strain curve; (2) when external con-
ditions or input data change, PSO dynamically adjusts
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model parameters, improving the model’s adaptabil-
ity and robustness, allowing for more accurate predic-
tions of stress-strain behavior under varying materials
and temperature conditions; (3) PSO’s parameter op-
timization reduces the complexity of the LSTMmodel,
enabling more precise selection of key parameters and
thereby improving overall performance.

5. Conclusions

In this study, a Long Short-Term Memory (LSTM)
model cooperating with the Particle Swarm Optimiza-
tion (PSO) algorithm (LSTM-PSO) was established
to analyze the deformation flow behavior of the Ni-
based superalloy. The LSTM-PSO model can accu-
rately forecast true stress at deformation temperatures
between 920 and 1040◦C and strain rates from 0.001
to 1 s−1. With a correction coefficient of 0.9988 and
an average absolute relative error of 1.16, the LSTM-
PSO model demonstrates superior predictive perfor-
mance compared to conventional physically based and
phenomenological models. This is due to its ability to
effectively handle the complexity and nonlinear char-
acteristics of time-series data while optimizing param-
eters to improve model accuracy and generalization.
The application of this method facilitates more pre-
cise material property predictions, providing strong
support for material design and engineering applica-
tions.
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