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Abstract

In this paper, the simple numerical algorithm is proposed that enables to estimate ternary
interdiffusion coefficients D in systems with not too strongly interacting components. D’s are
obtained from measurement with a single model diffusion couple. They can be used to predict
concentration curves Ci(x) (i = 1, 2, 3) in arbitrary time with numerical errors that are
comparable with experimental errors of measurement of ci itself and comply with theoretical
constraints following from the linear irreversible thermodynamics. The algorithm does not
need any external thermodynamic data and external measurements (e.g., it is not necessary
to measure the shift of inert markers in the interface). It can be applied using commonly
accessible SW, and it is not time-consuming. Values of D are close to those obtained with the
help of much more laborious experimental – also approximate – methods.

K e y w o r d s: diffusion, interdiffusion, ternary alloys, transport properties, ternary diffusion
coefficients

1. Introduction

There are many processes in technical practice that
are controlled by chemical diffusion. To describe the
kinetics of these phenomena, which enables, e.g., esti-
mation of optimum production of construction compo-
nents or prediction of their behavior during the oper-
ation, it is necessary to know concentration and tem-
perature dependent interdiffusion coefficients D. Since
there is no general theory of D’s, their values must
be obtained by extremely laborious experiments with
many diffusion couples.
Mutual diffusion in an n-component system can

be described by the formalism of linear irreversible
thermodynamics (LIT). The central problem with the
general approach, applied to this case, is how to
find diffusion coefficients D̃

(3)
ij (i, j = 1, 2 are two

independent components, the third one – the up-
per index – is dependent) that relate diffusion fluxes
of chemical components to concentration gradients.
These interdiffusion coefficients depend on tempera-
ture and on the local composition ci. It is not a sim-
ple task – even with constant diffusion coefficients – to
find a complete set of D̄(3)ij ’s, because the number of
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D̄
(3)
ij ’s exceeds the number of equations that offers
LIT.
Astonishingly, evaluation of D̄(3)ij ’s is still an open

problem, therefore, considerable effort has been de-
voted to the elaboration of approximate techniques
of calculation and/or estimation of interdiffusion co-
efficients [1–13]. In the simplest cases, the modified
Boltzmann-Matano (BM) [1, 2] and Hall’s (HM) [3]
analyses were applied. In all other instances, special
evaluation procedures [5] or further independent equa-
tions from outside of LIT (e.g., observation of the mo-
tion of inert markers [6]) are needed. Transfer-matrix
method developed for analysis of multicomponent dif-
fusion [7] is based on a partition of diffusion zone into
segments, where the diffusion coefficients are constant.
Completely different is pragmatic method recently de-
veloped by Chinese group [8–10]. Method is based on
the phenomenological theory of diffusion that uses ex-
ternal thermodynamic data.
A rigorous solution of the problem in ternary sys-

tems (n = 3), completely within the frame of LIT,
is the Matano-Kirkaldy’s method (MK) [5] utilizing
two diffusion couples with intersecting diffusion paths.
This is, however, a very troublesome procedure, since
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at least m + 1 diffusion couples must be analyzed
to obtain m sets of diffusion coefficients at m dif-
ferent compositions. Moreover, there are some theo-
retical and experimental suggestions that such coeffi-
cients may depend on the choice of intersecting diffu-
sion paths [11, 12].
The idea used in the present paper was inspired

by works by Dayananda’s group (see, e.g., [13]) that
made an accessible evaluation of interdiffusion coeffi-
cients using a single diffusion couple. In the present
paper, revised and extended method [14] of estima-
tion of D̃(3)ij from a single diffusion couple is proposed.
The detailed evaluation procedure is illustrated using
our previous experimental data for the quasi-binary
diffusion couple Ni3Al-Cr/Ni3Al. Our results are also
compared with BM, HM and with data calculated
from other – more complicated – numeric algorithm
MultiDiFlux [13, 15–17].

2. Theory

2.1. Principal idea

Dayananda and Sohn [18] published equation that
relates the diffusion flux Ji to concentration curves
Ci(x) via bypassing the Fick’s law, and consequently
standing outside of LIT. The fundamental idea of the
authors was the introduction of forms

Ipi =

xR∫

xL

Ji (x− xm)
p dx, p = 0, 1, ... (1)

that produced other independent equations suitable
for calculation of an average value of independent in-
terdiffusion coefficients D̄(3)ij . Within a selected inter-
val in the segment of the diffusion zone limited by
co-ordinates xL and xR, the D̄

(3)
ij ’s were considered

constants.
In Eq. (1), the index i enumerates components, the

exponent p = 0, 1,. . . is an integer and xm refer to the
position of the Matano plane calculated from equation

+∞∫

−∞
(x− xm) dCi = 0 (2)

for each component i. Values of Ipi in Eq. (1) can be
obtained numerically using known diffusion fluxes Ji
calculated from relation [19]:

Ji (x) =
C−

i − C+i
2t

{
Yi (x)

x∫

−∞
[1− Yi (x)] dx+

+ [1− Yi (x)]

∞∫

x

Yi (x)dx

}
, (3)

where the concentrations Ci were transformed as fol-
lows [20]:

Yi (x) =
Ci (x)− C+i
C−

i − C+i
. (4)

C−
i and C

+
i are the terminal concentrations of the i-th

component in x = –∞ and x = +∞, respectively, and
t is the diffusion time. The molar volume in Eq. (3) is
assumed to be constant.
For the case of ternary interdiffusion (n = 3), there

are four independent diffusion coefficients D̃(3)ij . Au-
thors of paper [18] show that using p= 0 and 1, four in-
dependent equations can be obtained and solved yield-
ing four average coefficients D̄(3)ij . Within the interval

Δx = <xL, xR> , the values of D̄
(3)
ij are constant.

Dayananda and Sohn [18] proposed that the procedure
applies to relatively wide intervals Δx only (hundreds
of µm).

2.2. Our extension

We have shown [14] that the original method intro-
duced by Dayananda and Sohn [18] can be extended
to the case where the diffusion zone is subdivided into
very narrow intervals Δx = xq+1 – xq (Δx may de-
crease down to about 1 µm), it is possible to obtain
a series of D̄(3)ij ’s (one average D̄

(3)
ij value for each in-

terval Δx) that approach the true interdiffusion coef-
ficients D̃(3)ij (Ci) within individual intervals.
The system of four independent equations can be

formally obtained if both sides of the two equations
for diffusion flux (LIT)

Ji = −
∑
j=1,2

D̃
(3)
ij

∂Cj

∂x
, i = 1, 2 (5)

are multiplied by (x – xm)p and then integrated over
Δx. After rearrangement, the four equations read

I0i = −D̄
(3)
i1 ΔC1 − D̄

(3)
i2 ΔC2, i = 1, 2, p = 0, (6)

and

I1i = −D̄
(3)
i1 ΔJ1 − D̄

(3)
i2 ΔJ2, i = 1, 2, p = 1, (7)

if the following substitutions are used

ΔCi = Ci (xq+1)− Ci (xq) , (8)

ΔJi = Ji (xq+1)− Ji (xq) . (9)

Final relations for D’s follow directly from Eqs. (6)
and (7):

D̄
(3)
11 =

ΔJ2I01 −
ΔC2
2t

I11

M
, (10)
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D̄
(3)
12 = −

ΔJ1I
0
1 −
ΔC1
2t

I11

M
, (11)

D̄
(3)
21 =

ΔJ2I02 −
ΔC2
2t

I12

M
, (12)

and

D̄
(3)
22 = −

ΔJ1I02 −
ΔC1
2t

I12

M
, (13)

with the denominator

M = ΔC1ΔJ2 −ΔC2ΔJ1. (14)

3. Description of the numerical treatment

3.1. Raw data processing

Smoothing the concentration profiles that removes
the scatter of measured Ci’s is the first step. In
this work, trial functions from the TableCurve 2D-
-Automated curve fitting and equation discovery [21]
were used. This commercial SW package tests the fit
quality of thousands of internal equation types and/or
user-defined functions to measured data. As a fact
of experience, the best candidate functions of Ci(x)
found by the SW must be carefully checked with re-
spect to their physical meaning.

3.2. Numerical calculation of D̄(3)ij

From the smoothed concentration profiles Ci(x),
the dimensionless concentrations Yi(x) can be calcu-
lated using Eq. (4) and diffusion flux Ji and inte-
grals Ipi from Eqs. (3) and (1), respectively. Of course,
known analytic form of Ci(x) would allow one to get
J ’s and I’s analytically, but for most practical pur-
poses, numerical quadrature within each Δx is suffi-
cient. It can be easily found that ten integration nodes
within each Δx lead to reasonably correct results. Co-
efficients D̄(3)ij can be easily calculated from Eqs. (10)–
(13).

3.3. Limit Δx → 0

It is obvious from Eq. (14) that coefficients
D̄
(3)
ij show singular behavior if M = 0, i.e., if

ΔC1ΔJ2 = ΔC2ΔJ1. (15)

However, this can be avoided by a change of nodes xq.
Numerical instability may also occur if the width of

interval Δx decreases. It follows that differences ΔJi,

ΔCi and integrals I
p
i decrease as well and Eqs. (10)–

(14) approach the indeterminate expressions. In such
a case, coefficients D̄(3)ij still can be evaluated, since
fitting curves Ci(x) are known in an analytic form
andD’s can be calculated using the known L’Hôpital’s
rule. Anyway, the numerical stability ofD’s can be im-
proved by running the mathematical operations with
sufficiently high numerical accuracy, which is not a
compelling problem. It is worth noting at this place
that the high numerical accuracy is needed for the
mathematic operations with fitting functions Ci(x).
Of course, the attainable accuracy of primary data
Ci measured by electron probe microanalysis is much
lower. The scatter of Ci has to be suppressed by care-
ful smoothing.

4. Results

4.1. Evaluation of diffusion coefficients

Application of the proposed method is illustrated
on data from mutual diffusion in single-phase couple
Ni3Al-Cr/Ni3Al annealed at 1473K/164 ks [14]. The
Ni-Al-based intermetallics (modified, e.g., by Ta, Mo
[22], by Ti, Fe [23], by Mo, Cr, V [24], etc.) are im-
portant for technical applications and hence, it is ad-
visable to know the interdiffusion coefficients. Mea-
sured CCr and CAl, taken as independent concentra-
tions, are plotted in Fig. 1 (points) together with fitted
curves Ci(x) (lines) and 99.99 % confidence intervals
(shaded area). The Al concentration profile was fit-
ted by Gauss cumulative function [21] (solid line in
Fig. 1a). To demonstrate a sensitivity of D̄(3)ij (Ci) to
the choice of fitting function, the profile CCr(x) was
fitted by an asymmetric sigmoid function [21] (fit 1,
solid line in Fig. 1b) and by our user-defined function

CCr(x) = a1

{
1
2

[
1 + erf

(
x+ a2
a3

)]
erfc

(
x+ a2
2
√
a4t

)
+

+
1
2

[
1− erf

(
x+ a2
a3

)]
erfc

(
x+ a2
2
√
a5t

)}
, (16)

where a1 = 1/2(C
−
i −C+i ) and a2 – a5 are the fitting

parameters (fit 2, dashed line in Fig. 1b). Both fitting
functions coincide well one with another, except for
the region of very small CCr, as can be seen in the
inset. Even in this region, the both functions lie within
the confidence interval. Calculation of D̄(3)ij (Ci) from
Eqs. (10)–(13) was a matter of elementary arithmetic.
Since the diffusion path Ci = f(Cj) for the given

diffusion couple is invariant during the diffusion time
t, the chemical composition along the coordinate x
is completely and unambiguously described by one of
the two independent concentrations Ci only. There-
fore, the final interdiffusion coefficients D̄(3)ij (Ci) for
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Fig. 1. Concentration profiles Ci and fitting functions Ci(x) measured in diffusion couple Ni3Al-Cr/Ni3Al after annealing
at 1473 K for 164 ks [14]: (a) – Al, (b) – Cr.

the given diffusion couple are presented in Figs. 2 and
3 in dependence on CCr only (solid lines). All the cal-
culations were done easily with a numerical accuracy
of 15 digits using Microsoft Excel.
A comparison of Fig. 2 for asymmetric sigmoid

function (solid line) and Fig. 3 for user-defined func-
tion (solid line) in Eq. (16) shows that even a slight
variation in Ci(x) leads to a considerable change in
resulting D’s.

4.2. Inherent consistency

Since the diagonal elements of diffusion matrix
(with i = j) should be invariant against the choice
of the third, dependent component, the calculation
of ternary interdiffusion coefficients was done using
CCr, CAl and measured concentration CNi to evalu-
ate D̄

(Al)
CrCr(CCr) and D̄

(Cr)
AlAl(CCr). As it is shown in

Figs. 2a,d, and Figs. 3a,d, these values (dash-and-
-dot lines) are reasonably close to D̄

(Ni)
CrCr(CCr) and

D̄
(Ni)
AlAl(CCr) (solid lines), respectively, which complies
with the needs of inherent consistency of the proposed
method.

4.3. Comparison with BM and HM

The diffusion system Ni3Al-Cr/Ni3Al behaves al-
most as being quasi-binary. Therefore, we have made
an attempt to evaluate coefficients of mutual diffu-
sion D̃Cr and D̃Al by BM. One can see that the re-
sulting D̃i’s , plotted in Figs. 2a, d, and 3a, d in de-
pendence on CCr (dashed lines), agree quite well with
values D̄(k)CrCr(CCr) (k = Ni, Al) and D̄

(k)
AlAl(CCr) (k =

Ni, Cr), respectively. This can be considered as fur-
ther evidence that values of D̄(3)ij (Ci) calculated by
the present method lie close to those that could be
expected. This conclusion is also supported by HM
in terminal parts of the diffusion profile (see big full
points in Figs. 2a,d, and Figs. 3a,d), where the BM is
numerically unstable.

4.4. Comparison with Multi DiFlux

To compare the strength of our method, we
also made calculation with the help of program
MultiDiFlux [15, 16]. These values obtained with
the same width of interval Δx = 2 µm are shown
in Figs. 2, 3 (crosses). It is obvious that our re-
sults are somewhat higher compared to results cal-
culated with MultiDiFlux. However, values of D̄(Ni)CrCr

D̄
(Ni)
CrAl and D̄

(Ni)
AlCr calculated by our method in ter-

minal parts of diffusion zone agree well with the re-
spective values obtained by MultiDiFlux and agree-
ment of values of D̄(Ni)AlAl calculated by both meth-
ods can be seen in the middle of the diffusion
zone.

4.5. Dependence of D’s on the interval width
Δx

It was shown previously [25] that values of D̄(3)ij (Ci)
calculated with MultiDiFlux strongly depended on
Δx. Hence, it suggests itself to test the stability of
our method when the Δx varies and to compare
its behavior with that of MultiDiFlux in this as-
pect.
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Fig. 2. Calculated ternary interdiffusion coefficients D̄(k)ij (CCr) and interdiffusion coefficients in quasi-binary approximation,
D̃i(CCr) calculated by BM and HM; fit 1.

We varied Δx from 2 to 32 µm and calculated
D̄
(Ni)
ij (CCr) by the both methods. Results in Figs. 4
and 5 show that the sensitivity of our method to vari-
ation in Δx is much weaker compared to the sensi-
tivity of MultiDiFlux. Further, for greater Δx, the
results from MultiDiFlux approach results from our
method, especially in terminal parts of diffusion pro-
file – see Fig. 5. The numerical instability of results
from MultiDiFlux (see singularities in concentration
dependence) and relatively high numerical sensitivity
to Δxmay be the origin of differences betweenD’s cal-
culated by both methods for small Δx (see Figs. 2, 3).

4.6. Conditions of stability

All values of D̄(3)ij (Ci) calculated by the present
method satisfy stability constraints [26]:

D̄
(3)
ii + D̄

(3)
jj > 0, (17)

D̄
(3)
ii D̄

(3)
jj − D̄

(3)
ij D̄

(3)
ji ≥ 0, (18)

and (
D
(3)
ii −D

(3)
jj

)2
− 4D(3)ij D

(3)
ji ≥ 0 (19)

within the diffusion zone.
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Fig. 3. Calculated ternary interdiffusion coefficients D̄(k)ij (CCr) and interdiffusion coefficients in quasi-binary approximation,
D̃i(CCr) calculated by BM and HM; fit 2.

5. Reverse reconstructions of concentration
profiles

We compared concentration distribution Ci(x, t),
simulated using calculated values of D̄(3)ij (Ci), with
measured concentrations Ci. It is easy to obtain con-
centrations Ci(x,τ) in successive iteration for diffusion
times τ from 0 to t: Starting from an initial distribu-
tion Ci(x,0) (e.g., very steep distribution of Gaussian
type identical for both i and j), concentration profiles
for the next time period τ +Δτ were calculated from
recursive formula

Ci (x, τ +Δτ ) = Ci (x, τ ) +

+
Δ

[
D̄
(3)
i1
ΔC1 (x, τ )
Δx

+ D̄
(3)
i2
ΔC2 (x, τ )
Δx

]

Δx
Δτ. (20)

For the iteration process, D’s must be known for all
x in the diffusion zone. In terminal parts of diffusion
couple, however, the calculated diffusion coefficients
D̄
(3)
ij (CCr) are not too reliable (solid lines are not plot-
ted up to unaffected ends of diffusion couple – see
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Fig. 4. Influence of Δx on values of D̄(k)ij (CCr) calculated by the proposed method; fit 1.

Figs. 2–5). Therefore, we used – for the purpose of it-
erations – values D̄(3)ij [CCr(x)] obtained by fitting the

values of D̄(3)ij (CCr) calculated within the central part
of diffusion zone by high-precision rational function
[21]

D̄
(3)
ij [CCr(x)] =

=
a+ cCCr(x) + eC2Cr(x) + gC3Cr(x) + · · ·

1 + bCCr + dC2Cr(x) + · · · . (21)

Usually, using a few first terms is sufficient to fit well
the calculated D’s and also define reasonable values
in terminal parts of diffusion couple. See examples in
Fig. 2 – dotted lines. It should be emphasized that

the knowledge of D̄(3)ij [CCr(x)] values is necessary for
iterations according to Eq. (20). Their accuracy in ter-
minal parts of the couple is, however, not too im-
portant, since they stand in a product with small
values of derivatives of Ci (see the second term in
Eq. (20)). Therefore, they do not contribute substan-
tially to Ci(x, τ +Δτ).
Results of the simulation are shown in Fig. 6. It is

obvious that all simulated concentration profiles cal-
culated with obtained D’s agree very well with orig-
inal data and moreover, they lie within the 99.99 %
confidence limits indicated by gray areas.
It is clearly seen that there is no significant

difference between concentration profiles simulated
with considerably different diffusion coefficients, as is
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Fig. 5. Influence of Δx on values of D̄(k)ij (CCr) calculated by MultiDiFlux; fit 1. Values calculated by the proposed method
(for fit 1 and Δx = 2 µm) are also plotted for comparison (dashed line).

shown in Fig. 6 − compare discrepancies between our
results and those from MultiDiFlux in Figs. 2 and 3.
This is caused by the nature of the problem: carefully
measured concentration profiles lead to the consid-
erable uncertain diffusion coefficients but, in the re-
versed sense, roughly estimated diffusivities produce
concentration distribution with an accuracy sufficient
for most practical purposes.

6. Discussion

The proposed method is a simple algorithm that
gives estimated values of ternary interdiffusion coef-

ficients, D̄(3)ij (Ci), from measured concentration dis-
tribution in a single diffusion couple. It needs no ex-
ternal measurements or additional data (Kirkendall
markers shift, thermodynamic data, etc.). In termi-
nal parts of diffusion zone, the calculated values are
close to approximate coefficients obtained by HM. For
quasi-binary interdiffusion (two concentrations vary,
and the third one is relatively constant), the diago-
nal coefficients D̄(3)ii (Ci) approach the coefficients of
mutual diffusion D̃i(Ci) calculated by BM.
The coefficients D̄

(3)
ij (Ci) represent the constant

average values over individual intervals Δx. It was
shown that selection of sufficiently low Δx (down
to about 2 µm) offers a possibility to approximate
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Fig. 6. Concentration profiles Ci(x) calculated by profiler using D̄
(Ni)
ij [CCr(x)] obtained by the proposed method and by

the MultiDiFlux: (a) – Al, (b) – Cr.

the concentration-dependent true interdiffusion co-
efficients D̃

(3)
ij (Ci) closely with the average coeffi-

cients D̄(3)ij (Ci). Dependence of diffusion coefficients

D̄
(3)
ij (Ci) on Δx is much weaker and more stable com-
pared with values calculated by MultiDiFlux in a
broad interval of Δx = 2–32 µm. For Δx ≥ 32 µm,
our results are close to those obtained byMultiDiFlux.
Differences between values of D̄(3)ij (Ci) calculated by
both methods originate most likely in lower accuracy
of MultiDiFlux calculus and/or in its inappropriate
selection of a fitting function.
It should be mentioned that the present method

cannot be applied to the evaluation of diffusion co-
efficients if C1 is (almost) linearly dependent on C2.
In such a case, the rank of the matrix of the system
of equations for D’s decreases and the system cannot
be solved. In other words, the diffusion couple with
C2 ≈ rC1 + s (r, s are constants) cannot be used for
reliable evaluation of D’s. This limitation is close to
a requirement that composition vector should be suf-
ficiently different from eigenvector of diffusion matrix
[27].

7. Summary

A numerical method is proposed for the estima-
tion of concentration dependent ternary interdiffusion
coefficients D̄(3)ij (Ci) from concentration distributions
C1 and C2 measured in a single diffusion couple.
The numerical stability and reliability of coeffi-

cients D̄(3)ij (Ci) were tested using the diffusion couples
(Ni)-Al-Cr [14].

Our results obtained with the proposed method
agree reasonably with results obtained by other meth-
ods (BM, HM) and are also close to the results from
MultiDiFlux when sufficiently large intervals Δx are
used in the diffusivity calculations. Reverse recon-
struction of concentration profiles with the help of in-
terdiffusion coefficients found by the method agrees
very well with the originally measured Ci’s.
It was shown that a careful smoothing of measured

concentration profiles is very important. Even a slight
variation in Ci(x) leads to a considerable change in
resulting D’s.
The method does not need any external character-

istics such as the velocity of inert markers, thermody-
namic data, etc.
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