
Kovove Mater. 51 2013 311–316
DOI: 10.4149/km 2013 5 311

311

Crack identification using elastic waves:
a boundary element method
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Abstract

This work is aimed to obtain numerical results that allow the detection and characterization
of subsurface discontinuities in metallic materials by the application of Rayleigh compression
and shear elastic waves. The solution is obtained from boundary integral equations, which
belong to the field of elasto-dynamics. Subsequent to the implementation of the boundary
conditions, a system of Fredholm’s integral equation of second kind and zero order is obtained
in frequency domain, which is solved using the method of Gaussian elimination. Resonance
peaks arise from analysis in frequency domain allowing inferring the presence of discontinuit-
ies. Aluminum, copper, steel, molybdenum, titanium and tungsten materials were analyzed,
however, a greater emphasis on the steel properties was considered due to its extended use.
Results obtained are in agreement with those published in references.

K e y w o r d s: crack detection, elastic waves, Rayleigh’s waves, discontinuities, boundary ele-
ment method

1. Introduction

It is well known that the presence of cracks in
structural components can compromise its integrity.
Cracks in materials used in mechanical and civil en-
gineering can cause reduction in strength which leads
to instability, leakage or collapse depending on the
cracked component.
The development of studies for the identification

and characterization of cracks has its origins in a vari-
ety of areas, citing for example Griffith [1]. The tech-
nological progress focused on non-destructive testing
(NDT) of materials has led to the development of
devices such as pulse generators and receivers that can
reach frequencies as high as 200MHz. On the other
hand, advances on theoretical and numerical models
[2, 3] have proved to be useful for a joint interpret-
ation with developments in the NDT field [4, 5]. An
important overview on theoretical results in relation
to the interaction of elastic waves with cracks can be
seen in Zhang and Gross [6].

*Corresponding author: tel.: + 52 55 91758145; e-mail address: arcastel@imp.mx

The identification and characterization of subsur-
face cracks and surface breaking cracks using Rayleigh
waves are of much interest in the industry, see for ex-
ample references [7–12].
This paper considers the study of boundary integ-

ral equations, derived from the Somigliana’s classical
theorem, to deal with the detection and characteriza-
tion of subsurface discontinuities using elastic waves.
Particularly, this method can be seen as one belong-
ing to the boundary element method (BEM), and ac-
quires the character of indirect (IBEM) because the
force densities which are unknown in the integrand are
obtained in an intermediate step. Subsequent to the
implementation of the boundary conditions a system
of Fredholm’s integral equations of second kind and
zero order is obtained in the frequency domain, which
is solved using the method of Gaussian elimination.
It is important to mention that analysis in frequency
domain reveals resonance peaks, which can be linked
to the presence of subsurface discontinuities.
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2. Boundary integral equation

If anelastic solid domain V bounded by its bound-
ary S is considered, the diffracted displacement and
traction fields under harmonic excitation can be ex-
pressed, neglecting body forces, by means of the
single-layer boundary integral equations:

udi (x) =
∫

∂S

Gij(x; ξ)φj(ξ)dSξ, (1)

and

tdi (x) = cφi(x) +
∫

∂S

Tij(x; ξ)φj(ξ)dSξ, (2)

where udi (x) is ith component of the displacement at
point x, Gij(x; ξ) is Green’s function, which repres-
ents the displacement produced in direction i at x due
to the application of a unit force in direction j at point
ξ, φj(ξ) is the force density in the direction j at point
ξ. The product φj(ξ)dSξ is the force distribution at
the surface S (the subscripts i, j are limited to be 1 or
3). The subscript in the differential shows the variable
over which the integration is done. This integral equa-
tion can be obtained from Somigliana’s representation
[13]. Furthermore, it was demonstrated that if φj(ξ) is
continuous along S, in that case, the displacement field
is continuous across S [14]. tdi (x) is ith component of
tractions, c = 0.5 if x tends to the boundary S “from
inside” the region, c = −0.5 if x tends to S “from out-
side” the region, or c = 0 if x is not at S. Tij(x; ξ) is
Green’s function traction, i.e., the traction in i direc-
tion at point x, linked to the unit vector ni(x), due
to the application of a unitary force in j direction at ξ
on S. The following section presents Green’s functions
for displacements and tractions.

3. Two-dimensional Green’s functions in
unbounded space

In a homogeneous isotropic elastic unbounded me-
dium, 2D Green’s functions are the displacements and
tractions responses of the medium at a given location
x when a unit line load is applied at ξ.
Assuming harmonic time dependence exp(iωt),

where i =
√−1, ω is circular frequency, and t is time,

the displacement in i direction, when the load is ap-
plied in j direction, can be expressed as:

Gij(x; ξ) = Aδij − B(2γiγj − δij). (3)

On the other hand, the tractions at x in i direction
for a given unit vector ni normal to S when the unit

load is applied at ξ in the direction j are:

Tij =
µ

r

{[
−4B + λ

D (ωr/α)
2µα2

]
γjni +

+

[
−4B + D (ωr/β)

2β2

]
× [γinj + γknkδij ]

}
+

+
µ

r
{(C + 16B) γiγjγknk} . (4)

For Eqs. (3) and (4) these expressions are defined:

A =
1
i8ρ

[
H
(2)
0 (ωr/α)

α2
+

H
(2)
0 (ωr/β)

β2

]
, (5)

B =
1
i8ρ

[
H
(2)
2 (ωr/α)

α2
− H

(2)
2 (ωr/β)

β2

]
, (6)

C =
D (ωr/α)

α2
− D (ωr/β)

β2
, (7)

D (p) =
i
2ρ

pH
(2)
1 (p) , (8)

where λ and µ are the Lamé’s constants, ρ is
mass density, α =

√
(λ+ 2µ)/ρ and β =

√
µ/ρ

are the P and S wave velocities, respectively, r =√
(x1 − ξ1)

2 + (x3 − ξ3)
2, γj = (xj − ξj) /r, δij is

Kronecker’s delta (= 1 if i = j, = 0 if i �= j) and H
(2)
m (·)

is the Hankel’s function of second kind and order m.

4. Statement of the problem

In general terms, the response of a cracked medium
should satisfy the displacement and traction states
represented by the sum of a free field (super index
“o”) and a diffracted field (super index “d” ), this is:
ui(x) = uoi (x) + udi (x) and ti(x) = toi (x) + tdi (x),
respectively. The free field always represents the in-
cidence of Rayleigh, compressional (P) or shear (SV)
waves. To represent the crack or discontinuity, trac-
tions free boundary conditions must be established at
its contour, i.e., ti(x) = 0.
The integral equations established in Eqs. (1) and

(2) allow the inclusion of cracks or discontinuities, be-
cause of the use of multi-region concept, in which the
domain of study may be discrete in regions and the
joint between them is given by the boundary condi-
tions that represent continuity (uRi (x) = uEi (x) and
tRi (x) = tEi (x)), e.g., for the union of the region R
and the region E. To include a crack or discontinu-
ity between two regions, traction-free boundary con-
ditions tRi (x) = 0 and tEi (x) = 0 must be established
for the discontinuity sides that belong to each region.
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Each surface is divided into boundary elements of
length equal to or less than 1/6 of the shortest SV
wavelength each, depending on the frequency. For ex-
ample, for a free surface, the joint between regions
R and E and the discontinuity requires N, M andK
boundary elements, respectively, then Eqs. (1) and (2)
must be written, considering free and diffracted fields
and boundary conditions described previously, as:

cφRi (x) +
∫

∂R

φRj (ξ)T
R
ij (x; ξ) dSξ = −toi

R (x),

x ∈ ∂3R, (9)

∫

∂R

φRj (ξ)G
R
ij (x; ξ) dSξ −

∫

∂E

φEj (ξ)G
E
ij (x; ξ) dSξ =

= uoi
E (x)− uoi

R (x) , x ∈ ∂1R = ∂1E, (10)

cφRi (x) +
∫

∂R

φRj (ξ)T
R
ij (x;ξ) dSξ − cφEi (x)−

−
∫

∂E

φEj (ξ)T
E
ij (x; ξ) dSξ = toi

E (x)− toi
R (x),

x ∈ ∂1R = ∂1E, (11)

cφRi (x) +
∫

∂R

φRj (ξ)T
R
ij (x; ξ) dSξ = −toi

R (x) ,

x ∈ ∂2R, (12)

and

cφEi (x) +
∫

∂E

φEj (ξ)T
E
ij (x; ξ) dSξ = −toi

E (x) ,

x ∈ ∂2E. (13)

Region R is formed by the boundary ∂R = ∂1R ∪
∂2R∪ ∂3R, while the region E by the boundary ∂E =
∂1E ∪ ∂2E. ∂1R and ∂1E represent the continuous
segments between region R and E, ∂2R is the discon-
tinuity or crack face on the side of the region R, ∂2E
is the discontinuity or crack face on the side of the re-
gion E, and ∂3R is the free surface belonging to region
R.
Equations (9) to (13) form Fredholm’s system of

integral equations to be solved. Once the unknown
values (φ’s) are obtained, the diffracted displacement
and traction fields are computed by means of Eqs. (1)
and (2), respectively.

Fig. 1. a) Dimensionless horizontal displacements for four
crack depths at site A, b) resonance frequencies versus

depth relations for three shape defects.

5. Validation and numerical examples

Two references have been selected to validate the
results obtained by this formulation, the first is Achen-
bach et al. [3], and the other is Graff [15]. Achenbach
et al. studied the behavior of cracks under the incid-
ence of P waves and described the behavior for four
depth ratios d/2a = 0.2, 0.4, 0.6 and 1.0, where d is
crack depth and 2a is crack length, Figure 1a shows
the dimensionless horizontal displacements calculated
at point A.
Achenbach et al. also carried out dimensionless fre-

quency analysis for the range 0 ≤ η ≤ 3.0, where
η = ωd/CR, ω is the circular frequency, and CR rep-
resents the Rayleigh’s wave velocity. From Fig. 1a it
can be observed that theoretical results obtained by
the formulation introduced in this work are in good
agreement with Achenbach et al. Figure 1b illustrates
the resonance frequencies versus d/2a ratios for sub-
surface cracks, elliptical defects (b = 0.2a) and cavities
(radius = a) obtained from the formulation introduced
in this work, there can also be seen good agreement
with Achenbach et al. Figure 1b also allows a com-
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Ta b l e 1. Elastic constants of the metallic materials studied

Material ρ (mg m−3) α (km s−1) β (km s−1) E (GPa) ν λ (g Pa−1) µ (g Pa−1)

Aluminum 2.70 6.42 3.04 67.60 0.35 61.30 24.90
Copper 8.93 5.01 2.27 126.00 0.37 132.00 46.00
Molybdenum 10.00 6.30 3.40 299.00 0.29 165.00 115.00
Steel 7.89 5.79 3.10 196.00 0.29 112.00 75.80
Titanium carbide 5.15 8.27 5.16 323.00 0.18 77.90 137.00
Tungsten 19.40 5.20 2.90 415.00 0.27 198.00 163.00

Fig. 2. Horizontal and vertical displacements normalized
with the vertical displacement value at the surface (vo) for

three Poisson’s ratios.

parison of defect shape, depth and size based on a
frequency analysis.
Characterizing the presence of subsurface cracks by

the incidence of Rayleigh’s waves, the typical curve of
horizontal and vertical displacements normalized with
vo can be observed from Fig. 2, which is the value for
the vertical displacement at the surface. The influence
depth of Rayleigh’s waves for a non cracked medium
is a Rayleigh’s wavelength, where λR is the Rayleigh’s
wavelength for a given frequency. These typical curves
are plotted for three Poisson’s ratios ν = 0.25, 0.29
and 0.33, the dashed line shows results obtained by
IBEM. Poisson’s ratio ν = 0.29 corresponds to steel,
see Table 1, good agreement can be observed from
IBEM and Graff’s results [15].
For steel ν = 0.29 in the frequency range 0 ≤

η ≤ 3.0, horizontal and vertical displacement fields are
shown in Figs. 3a, and 3b, respectively, for the shal-
lowest (d/2a = 0.2) and deepest (d/2a = 1.0) crack
ratios. It is expected that a shallow crack causes ma-
jor alterations to Rayleigh’s wave front, while a deep
crack has an effect almost negligible for both displace-
ments.

Figure 3c shows a spectral ratio h/v almost con-
stant, except for crack depths d/2a = 0.2 and d/2a
= 0.4, for other crack depths h/v is almost constant.
In an enlarged detail of Fig. 3c the first peak caused
by crack depth d/2a = 0.2 can be observed, as well
as the constant behavior shown for crack depth d/2a
= 1.0, additionally it can be seen that at low frequen-
cies the spectral ratio h/v tends to 0.66 for any crack
depth, however, this value is maintained even for the
case when there is no crack, see Fig. 2 for h = 0.66
and v = 1.00 values on the surface, then h/v = 0.66.
To study the influence of cracks under the incid-

ence of shear elastic waves (S) located at depth ratios
d/2a = 0.2, 0.4, 0.6 and 1.0, Figs. 4a,b show horizontal
and vertical displacements, respectively, versus dimen-
sionless frequency range 0 ≤ η ≤ 3.0. Again, it is noted
that the shallow crack d/2a = 0.2 causes a greater al-
teration on the SV wave front and presents more acute
resonance peaks. Moreover, for deeper cracks d/2a =
0.6 and 1.0, the response measured at point A shown
in Fig. 1 tends to be negligible.
Finally, a group of metallic materials shown in

Table 1 has been selected to display the frequencies
at which resonance effects arise. Propagation velocit-
ies employed for the analysis as well as their dens-
ities and Poisson’s ratios can be consulted in [16].
Figure 5 shows the resonance frequencies obtained
for a crack embedded in the materials of Table 1,
with length 2a = 1 cm and depth d = 0.2 cm this is
d/2a = 0.2. Results obtained by the formulation in-
troduced in this work are drawn with dashed line. It
is important to mention that to verify these reson-
ance frequencies for the materials shown in Table 1,
two additional results have been included in Fig. 5
obtained by the finite element method (FEM) using
the ANSYS software package. The space between the
up crack face and the free surface was idealized as a
beam considering two extreme boundary conditions,
described as follows. First, continuous line represents
the response as a beam rigidly supported at its ends,
FEM (model 1) with length 2a = 1 cm and height
0.2 cm. Second, dotted line represents the same beam
but simply supported at its ends, FEM (model 2).
The curve obtained by the formulation introduced
in this work by IBEM is located between the FEM
curves. Additionally, Fig. 5 shows a shaded area to
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Fig. 3. Cracks subjected to the incidence of Rayleigh’s waves: a) horizontal displacements for crack depth ratios d/2a =
0.2 and d/2a = 1.0, b) vertical displacements for crack depth ratios d/2a = 0.2 and d/2a = 1.0, c) spectral ratio h/v for

crack depths d/2a = 0.2, 0.4, 0.6 and 1.0.

Fig. 4. Cracks subjected to the incidence of S waves: a) horizontal displacements, b) vertical displacements.

highlight the value of the dynamic shear modulus
that characterizes the metallic material used, accord-
ing to Table 1. Similar curves to this one can be de-
veloped for other crack depths (d/2a = 0.4, 0.6 and
1.0).

6. Conclusions

The present work was derived from the Fredholm’s
integral equations of the second kind and zero or-
der. After the implementation of the boundary condi-
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Fig. 5. Resonance frequencies versus dynamic shear mod-
ulus for d/2a = 0.2 by FEM and IBEM analysis.

tions and the use of the multiregional concept, it was
possible to formulate a system of integral equations,
where the unknowns named as force densities were
obtained. This method is understood as an indirect
boundary element formulation or IBEM and can be
seen as a conceptualization of Somigliana’s classical
theorem.
The excitation of the system was carried out by

the incidence of Rayleigh, P and S waves leading to
spectrum that is useful for the characterization of em-
bedded cracks in materials, particularly in the metallic
materials studied in this work.
The results obtained in the present work were val-

idated with published results of Achenbach et al. [3]
and Graff [15], and also by means of the finite ele-
ment method. The presence of cracks or discontinu-
ities causes resonance peaks, which can be identi-
fied using frequency analysis, the resonance peaks are
sharper as the defects are shallower.
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