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Abstract

A part’s surface layer quality is dictated by several factors, including surface roughness, the
microstructure of the metal surface layer, and the part’s mechanical and physical state. The
operating characteristics of machine components, such as wear resistance, vibration resistance,
contact strength, connection strength, part strength under cyclic loads, etc., are influenced
by surface layer conditions. The part’s surface roughness is just one of the primary geometric
attributes of a part’s quality, which is its accuracy in terms of size and shape. The current work
models the roughness surface of 3D selective laser melting of metal materials using genetic
programming and multiple regression. It then explains how to measure surface roughness using
this method. A novel approach to pattern recognition for analyzing the roughness of metal
materials melted using a 3D selective laser is introduced. Fractal geometry determines the
complexity of 3D selective laser melting of metal materials.

Key words: 3D selective melting, graph theory, pattern recognition, genetic programming,

multiple regression

1. Introduction

In recent years, 3D printing technology has grown
rapidly [1]. 3D printing is based on three-dimensional
digital representation. This manufacturing method
prints an object by dividing it into layers. This print-
ing process uses a variety of materials and inks. Metal
powder 3D printing has made rapid progress over the
past ten years. At the same time, with the develop-
ment of the industry, many myths and misconceptions
have appeared. Additive manufacturing of metal prod-
ucts will boost sales of CNC machines and other tra-
ditional parts machining tools. The future factory will
include many production technologies. The challenge
for product development engineers will be to know
when to use a particular technology to provide the
most value to the product. Additive manufacturing
is suitable for creating complex products that cannot
be made traditionally. Increasing complexity does not
add significant costs to modeling the part on the ma-
chine. However, this statement does not consider the
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additional development or post-processing time. It is
unprofitable to produce products of simple geometry
on a metal 3D printer. Metal printers are designed to
solve much more complex problems. 3D metal print-
ing is the additive manufacturing of metal products,
rightfully one of the most promising and rapidly de-
veloping areas of 3D printing. The technology dates
back to the conventional sintering of materials used
in powder metallurgy. But now, it has become more
advanced, accurate, and faster.

Selective laser melting (SLM) [2] is an additive
manufacturing or 3D printing technique that uses
lasers to fuse metal powder into solid 3D objects. SLM
is suitable for processing reactive high-strength met-
als, such as titanium, aluminum, stainless steel, cobalt
chromium, and nickel alloys, into functionally dense
parts with complex geometries. SLM is an innovative
technology for manufacturing complex in-shape and
structure products from metal powders using mathe-
matical CAD models. This process consists of sequen-
tial layer-by-layer melting of powder material using
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powerful laser radiation. SLM opens the broadest op-
portunities for modern production because it allows
you to create metal products of high precision and
density, optimize the design, and reduce the weight of
manufactured parts. Using SLM, it is feasible to pro-
duce items with better mechanical and physical quali-
ties than those made with conventional technology. As
SLM technology allows for the management of prod-
uct qualities, it is feasible to build unique, complex-
profile items without the need for machining or expen-
sive equipment. SLM machines are designed to solve
complex problems in aerospace, energy, oil and gas,
mechanical engineering, metalworking, medicine, and
jewelry. They are also used in research centers, design
bureaus, and educational institutions when conduct-
ing research and experimental work.

Why is geometry perceived as “dry” and “cold”?
Its inability to characterize the form of a cloud, moun-
tain, tree, or coastline is one of the causes. Tree bark
cannot be described as smooth. Clouds cannot be de-
scribed as spheres. Mountains cannot be described as
cones. Circles cannot represent coastlines, and light-
ning cannot follow a straight route. More broadly, I
say that many of Nature’s forms are so uneven and
fragmented that Nature shows only a higher degree of
complexity — not a whole different level — than Eu-
clidean figures. For any practical problem, quantity-
different length scales in natural forms can be consid-
ered limitless. Such phenomena present us with chal-
lenges and motivate us to do additional in-depth re-
search by examining the forms that Euclid rejected
due to their ”formlessness” — that is, by investigat-
ing the morphology of the ”amorphous.” This prob-
lem was disregarded by mathematicians, who instead
chose to create a myriad of theories that do not be-
gin to explain the things perceived or experienced. I
took a chance to rise to the challenge and created a
new geometry of nature with applications across var-
ious domains. The new geometry defines a family of
figures I call fractals [3] and can depict many asym-
metrical and fragmented patterns around us. It can
also give rise to fully developed theories.

Graphs or networks [4] are an important mathe-
matical tool that allows you to model and analyze
various systems and relationships between objects. A
graph is an abstract mathematical structure consist-
ing of vertices (nodes) and edges (links) between these
vertices. Graphs are widely used to model and an-
alyze various systems and relationships. In a graph,
each vertex represents an individual element or ob-
ject, and the edges represent connections or relation-
ships between those elements. For example, in a so-
cial connection graph, each vertex could represent an
individual, and the edges could represent friendship
or acquaintance between people. Graphs are an im-
portant tool in graph theory and have a wide range
of applications in various fields, such as computer sci-
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Fig. 1. EOS M 290.

ence, transportation logistics, social networks, biology,
material science, and others.

Pattern recognition [5] is the process of extract-
ing source data from the total mass of heterogeneous
objects and classifying them according to character-
istic features. These are powerful technologies that
are widely used in almost all industries today. Pat-
tern recognition plays an important role in modern in-
formation systems. Automatic image recognition sys-
tems have become especially widespread. Despite the
widespread commercialization of the software market,
the research intensity in this area does not decrease
because the reliability of existing solutions is still in-
sufficient. The problem is especially aggravated if the
database consists of thousands of standards, leading
to the complication of models of classified objects and,
consequently, the impossibility of implementing exist-
ing algorithms in real time.

This study aims to present a new pattern recog-
nition method for characterizing roughness Rp of 3D
selective laser melting of metal materials.

2. Material preparation and experimental
work, methodology

2.1. Experimental work and material
preparation

Since 2014, the EOS M 290 [6] has been utilized in
the serial manufacture of numerous applications. Its
three predecessors’ solid and dependable performance
has been built upon, guaranteeing homogeneous part
qualities from machine to machine, task to job, and
part to part. It is the obvious choice for flexible serial
production of metal components due to its large selec-
tion of materials, extensive monitoring suite, and ease
of integration into your production. Figure 1 presents
EOSM 290, and the parameters of EOS M 290 are
shown in Table 1.
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Table 1. Parameters of EOS M 290

Construction volume

Laser type

Precision optics

Scan speed

Focus diameter

Power supply

Power consumption

Compressed air supply

Machine dimensions (W x D x H)
Recommended installation space

32 A/400 V

250 x 250 x 325 mm?® (9.85 x 9.85 x 12.8 in®) (height incl. build plate)
Yb-fiber laser; 400 W

F-theta lens; high-speed scanner

up to 7.0 ms™! (23 ft sec™!)

100 um (0.004 in)

max. 8.5 kW /average 2.4 kW /with platform heating up to 3.2 kW
7,000 hPa; 20 m® h™! (102 psi; 706 ft> h™1)

2,500 x 1,300 x 2,190 mm® (98.4 x 51.2 x 86.2 in®)

min. 4,800 x 3,600 x 2,900 mm?® (189 x 142 x 114 in®)

Weight approx. 1,250 kg (2,756 1b)
Software EOSPRINT incl. EOS ParameterEditor, EOSTATE Everywhere,
EOSCONNECT Core, EOSCONNECT MachinePark,
Materialise Magics Metal Package and modules
pm
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Fig. 2. Surface roughness profile.

Material EOS Maraging Steel MS1 is used. Tool
steel powder used for EOS DMLSTM systems pro-
cessing is called EOS Maraging Steel MS1. The chem-
ical composition of parts constructed in EOS Marag-
ing Steel MS1 complies with US classification 18 %
Ni Maraging 300, European 1.2709, and German
X3NiCoMoTi 18-9-5. The steel powder known as
Maraging Steel (MS1) is distinguished by its strength
and toughness. After construction, parts can be easily
machined and post-hardened at temperatures above
50 HRC. This material is perfect for high-performance
industrial and engineering parts, such as those used in
motor racing and aerospace, and for various tooling
applications, including injection molding, die casting
of light metal alloys, punching, extrusion, etc.

Roughness [7] is a set of surface irregularities with
relatively small steps identified using the base length.
Irregularities with large steps are referred to as wavi-
ness, and with very large steps — as deviations in
shape. Surface roughness significantly affects the gaps
and tensions in joints, the strength of parts under vari-
able loads, wear resistance, corrosion resistance, tight-
ness, and other performance characteristics of parts.
Maximum Profile Peak Height: Rp is the distance be-

Fig. 4. Microstructure of SLM specimen.

tween the highest point of the profile and the mean
line within the evaluation length. Figure 2 presents the
surface roughness profile. Figure 3 presents the rough-
ness Rp of the SLM specimen, and Fig. 4 presents the
microstructure of the SLM specimen.

2.2. Methodology

The microstructure of the SLM specimen is very
complex. Classical Euclidian geometry cannot be
used. Fractal geometry has to be used to character-
ize the complexity of the microstructure of the SLM
specimen.
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Fig. 5. Homeomorphic fractal model.

2.2.1. Fractals

Two things are important in fractal geometry: self-
similarity or self-affinity and fractal dimension. In this
research, the homomorphic fractal model is presented.

2.2.1.1. The homeomorphic fractal model

The homeomorphic fractal model [9] is based on
drawing circles or ellipses with different radii. The
method is suitable for black-and-white images. The
largest radius R1 of the crust (ellipse) is chosen. With
it, the black dots can still be covered. Then, a smaller
radius R2 is chosen, and the process is continued.
Count the number of circles (ellipses) with the same
radii. The fractal dimension is represented by the di-
rectional coefficient of the graph line of log (radius
size) and log (number of circles/ellipses). Fractal pat-
terns are used to describe the complexity of the mi-
crostructure of SLM materials. Fractional dimensions
are a measure of fractal complexity that shows how
much the objects occupy the available space. With-
out regard to integer values, the fractal dimension
quantifies the shift in the “size” of a fractal set as
the observational scale changes. Figure 5 presents a

Fig. 6. Microstructure of SLM and homeomorphic fractal
model, drawing circles with different radii.

homeomorphic fractal model. Figure 6 presents the
microstructure of SLM and the homeomorphic fractal
model, drawing circles with different radii.

2.2.2. Pattern recognition

A novel method for pattern identification using
network theory was created. Firstly, the homeomor-
phic fractal model is used. Each circle is connected
with the circle with an equal radius d; (Fig. 7b). Then,
connections are transformed into networks (Fig. 7c).
For this graph, density is calculated:

n=2xE/Vx((V-1), (1)

where V' is the number of vertexes and F is the number
of edges in the graph.

2.2.3. Modeling

For modeling the roughness of the surface of 3D
SLM specimens, intelligent system methods (genetic
programming and linear regression) are used. The au-
tomatic construction or modification of programs us-
ing genetic algorithms is known as genetic program-
ming (GP) [10-12]. In genetic programming, the indi-
viduals in a population represent the programs. It is
convenient to represent these programs as trees where
functions are represented by internal nodes to which
subtrees are attached as input parameters. The leaves
of such a tree will be constants, task input parameters,
or program directive commands. This presentation of

Fig. 7. A novel method for pattern recognition.



M. Babic et al. / Kovove Mater. 62 2024 235-244 239

Table 2. Parameters of SLM specimen

Specimen Power (W) X1 Speed (mms™') X2 FD X3 Density of network n X4
S1 320 1000 1.54 0.69
S2 320 1150 1.51 0.64
S3 320 1300 1.67 0.84
S4 270 850 1.65 0.72
S5 270 1000 1.75 0.81
S6 270 1150 1.57 0.75
S7 270 1300 1.49 0.55
S8 220 700 1.78 0.91
S9 220 850 1.84 0.49
S10 220 1000 1.56 0.72
S11 220 1150 1.76 0.70
S12 220 1300 1.83 0.37
S13 170 700 1.61 0.66
S14 170 850 1.55 0.57
S15 170 1000 1.74 0.48
S16 170 1150 1.73 0.27
S17 170 1300 1.59 0.25
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(15+(Y/3))-(2*cos(X))
Fig. 8. Simple tree program of GP.

programs is clear and easy to implement. However,
working with trees is not always convenient when per-
forming operators, such as crossing over and mutation.
Essentially, completely new operators need to be im-
plemented. Crossing over will consist of replacing one
of the subtrees of the first parent with some subtree of
the second parent. A mutation will perform a random
change in one of the tree nodes (for example, changing
a function or constant). Thus, using trees entails sev-
eral problems: creating new mutation and crossover
operators and the dynamic length of the chromosome
encoding the tree. Figure 8 presents a simple GP tree
program.

A multiple linear regression model [13] is a practi-
cal statistical model for assessing the relationships be-
tween a continuous dependent variable and predictor
variables. Predictors might be derived fields, contin-
uous or categorical, to accommodate nonlinear rela-
tionships. As the model is made up of additive terms
— each of which is a predictor multiplied by a coeffi-

cient estimate — it is linear. A constant, or free term,
is also typically included in the model. Charts with
at least two continuous fields — one designated as the
target variable and the other as the predictor vari-
able — can be analyzed using linear regression to iden-
tify trends. To create an appropriate regression model,
such a chart can also be described with two auxiliary
continuous fields and a categorical predictor:

YE:Bo—f—BlXxl—f—BQXIQ—f—---—f—BnXIn—f—E,(Q)

where Y; is the dependent or predicted variable, By is
the y-intercept, i.e., the value of y when both z; and
o are 0, By and Bs are the regression coefficients rep-
resenting the change in y relative to a one-unit change
in x;1 and x;2, respectively, B,, is the slope coefficient
for each independent variable, and € is the model’s
random error (residual) term.

3. Results and discussion

The SLM specimen’s parameters are shown in Ta-
ble 2. Specimens S1 to S17 are indicated in the first
column. The second column shows the laser’s power in
W. X1 is used to indicate this parameter. The speed
of the laser is shown in mms™~! in the second col-
umn. X 2 is used to represent this parameter. The SLM
specimen’s complexity is shown in the third column.
X3 is used to indicate this attribute. The density of
the SLM specimen’s microstructure network is repre-
sented in the fourth column. X4 is used to indicate
this parameter. A hatch distance of 0.11 mm was em-
ployed. Table 3 shows the roughness of Rp  and Rp
y of the SLM specimen. Y is expressed in um. Rough-
ness Rp z is presented in the second column, while
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Table 3. Roughness Rp « and Rp y of SLM specimen

Specimen Rp z (pm) Y Rpy (um) Y
S1 19.37 21.93
S2 23.70 18.70
S3 20.93 15.13
S4 26.20 21.23
S5 21.00 17.37
S6 26.40 23.67
S7 23.23 22.47
S8 22.97 20.60
S9 19.20 22.30
S10 18.17 20.17
S11 22.53 20.20
S12 20.97 23.07
S13 21.00 18.40
S14 20.13 21.10
S15 16.77 20.57
S16 22.03 23.13
S17 20.63 17.93

Rp y is presented in the final column. Specimens S1
to S17 are indicated in the first column. The second
column shows the laser’s power in W. X1 is used to in-
dicate this parameter. The speed of the laser is shown
inmm/s in the second column. X2 is used to repre-
sent this parameter. The SLM specimen’s complexity
is shown in the third column. X3 is used to indicate
this attribute. The density of the SLM specimen’s mi-
crostructure network is represented in the fourth col-
umn. X4 is used to indicate this parameter. A hatch
distance of 0.11 mm was employed. Table 2 shows the
roughness of Rp x and Rp y of the SLM specimen.
Y is expressed in um. Roughness Rp x is presented in
the second column, while Rp y is presented in the final
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Fig. 10. Experimental and predicted data Rp y.

column. Specimen S6 has maximum roughness Rp x.
Specimen S5 has minimum roughness Rp y. Specimen

Table 4. Prediction roughness Rp = and Rp y of SLM specimen with GP and MR

Specimen GP Rp z GP Rp y MR Rp MR Rp y
S1 20.6195 19.0417 23.0 19.7
S2 23.7073 19.1161 22.4 19.5
S3 20.8691 15.1164 23.5 17.8
S4 26.2805 21.1524 22.6 22.0
S5 20.683 18.5083 21.6 20.2
S6 21.1949 23.8352 22.3 19.9
S7 23.1915 20.9413 21.2 21.1
S8 22.8615 19.0904 22.0 19.7
S9 18.7968 21.8041 21.3 22.3
S10 18.1566 22.2268 20.9 22.4
S11 22.7682 20.221 22.4 19.3
S12 20.3426 22.2206 20.8 21.9
S13 20.9905 18.8635 20.2 19.3
S14 20.7718 19.4757 19.3 19.2
S15 17.1425 21.1723 20.3 21.5
S16 21.9916 23.2368 20.9 22.7
S17 21.0051 17.5792 20.5 19.4
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S12 has maximum roughness Ra Y. Table 3 displays
the genetic programming model for the roughness of
Rp y and Rp x of the SLM specimen. The experimen-
tal and projected data, Rp z and Rp y, are shown in
Fig. 9 and Fig. 10, respectively.

Model of genetic programming for roughness Rp x
of SLM specimen presents Eq. (3). Model of genetic
programming for roughness Rpy of SLM specimen
presents Eq. (4). Model of multiple regression for
roughness Rp x of SLM specimen presents Eq. (5).
Model of multiple regression for roughness Rpy of
SLM specimen presents Eq. (6).

Model of genetic programming for roughness Rp x of SLM specimen

X4
Y = <X2< 21.6029 + 2X4 — X3%(—X4 + X3X4) + <3 ))/
4.68406 — < — X4 4 2X3(- X4+ X3X4)

X3?
—X3+ ——+ X3X4
~17.0189 — X2 — 5.68406X3 + X4 + )?4
X3+ X4
+ X3 <X4 + <3 i )
X42(4.68406+X37ﬁ72X4+2X3(7X4+X32X4))

X32 X32
- (4.68406 - X—i> < — 4.68406 — 2X3 + X—i +2X4+ X3 <X4 + (2X3X4)/ <(—X4 + X3X4)

2

X3?
- | 4.68406 + X3 — — — 2X4 —
< * X4 X4

X3+ 22 x3x4
X4 +2X3(— X4+ X32X4) (3)

+ X3(X3+ X4) ( — X4+42X3 ( —2X4+ X3 ( — X4+ X3(—X4+ X3%)(—X4+ X3X4)

2X3
* X32 '
4.68406+X 3—-r —2X4 4 2X3(~X4+X3X4)

Model of genetic programming for roughness Rp y of SLM specimen:

.06492X2 17.1298X2 + X4
x22( x24 7.0649  17.1298X2+
X3 X1X4
X1 == —2X4|Xx4
Y = 7448 + X3 + X3 XoX4 24
h 2X4 X1 X1
N X1 @
X22x43 X2X42 '
—8.06492 + X1 +2X3+2X4 — -
806492+ X1 +2X3+ X1 X1+ X4t X1x4

Model of multiple regression for roughness Rp X of SLM specimen:

Y =7.025062107 + X1 x 0.019486868 4+ X2 x 0.000754866 + X3 x 5.15784525 + X4 x 0.86467551. (5)

Model of multiple regression for roughness Rp Y of SLM specimen:

Y =20.9026845 + X1 x 0.008218161 — X2 x 0.001986141 + X3 x 2.897586093 — X4 x 8.871867038. (6)
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Regression statistics Rp « ANOVA Rp z
Multiple R 0.439025 df S§ MS F Significance F'
R Square 0.192743
Adjusted R Square -0.07634 Regression 4 20.1464 5.036599 0.716288 0.596777017
Standard error 2.651702 Residual 12 84.37831 7.031526
Observations 17 Total 16 104.5247
Regression statistics Rp «

Coefficients Standard error t stat P-value
Intercept 7.025062107 12.52450812 0.560905 0.585184
Power 0.019486868 0.014926675 1.305506 0.216196
Speed 0.000754866 0.003618846 0.208593 0.838265
Fractal dimension 5.15784525 6.123828793 0.842258 0.416114
Density of network 0.86467551 4.284879574 0.201797 0.843456

Regression statistics Rp y ANOVA Rp y
Multiple R 0.619158 df SS MS F Significance F’
R Square 0.383357
Adjusted R Square 0.177809 Regression 4 33.22382 8.305954 1.865051 0.181441126
Standard error 2.110325 Residual 12 53.44167 4.453473
Observations 17 Total 16 86.66549
Regression statistics Rp y

Coefficients Standard error t stat P-value
Intercept 20.9026845 9.9674783 2.097089 0.057843
Power 0.008218161 0.011879214 0.69181 0.502223
Speed —-0.001986141 0.002880015 —0.68963 0.503546
Fractal dimension 2.897586093 4.873575075 0.59455 0.563186
Density of network —8.871867038 3.410069582 -2.60167 0.023155

The increased development of flaws in the SLM
process is one of its main drawbacks. Defect gener-
ation in SLM parts may result from incorrectly se-
lecting one or more parameters. By forming a point
of stress concentration and initiating and propagating
fatigue cracks, these surface imperfections can signifi-
cantly reduce the overall strength and performance of
the SLM part. More often than not, surface roughness
is even more harmful than the typical material flaws
made using additive manufacturing [14]. Yasa et al.’s
study [15] examined how precision forging and various
machining techniques were compared to selective laser
melting (SLM) for producing parts with surface finish-
ing. The surface roughness and oxidation levels of the
SLM parts were discovered to be higher than those of
the other methods by the authors. The roughness lev-
els were observed to range from 10 to 15 pm. A kind of
SLM called MicroSLM, which uses finer powder parti-
cles and a smaller laser spot size, may lessen the sur-
face roughness and oxidation problems noted by Yasa
et al. [15]. MicroSLM can create items with smoother
surfaces and finer details using smaller laser spot sizes,

which reduces surface roughness [16]. Additionally,
finer powder particles can be used with microSLM,
which lowers the part’s oxidation levels by minimizing
residual stress and flaws. The surface quality of the
SLM components is enhanced by adequately selecting
the processing variables. The process parameters in-
fluencing the surface quality of SLM-built components
are scanning speed and laser power. ANOVA statisti-
cal analysis and regression statistics were applied to
evaluate the factors influencing the surface roughness,
Rp z and Rp y. Kaynak and Tascioglu [17] confirmed
that a lower surface finish is obtained in the SLM pro-
cess, partly due to partially melted powders and de-
fects like pores and cavities on surfaces of SLM parts,
even though the roughness depends on process param-
eters like scanning speeds and the temperature of the
SLM part surface [18]. Nevertheless, some additional
variables and factors affect surface roughness. The size
of the metallic powder, wall angle, liquid metal pool,
and layer thickness are more important than the oth-
ers [19], where a particular surface’s wall angle or draft
angle is measured horizontally.
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4. Conclusions

In this article, modeling the roughness surface of
the SLM specimen is presented. Over the past twenty
years, metallic alloy additive manufacturing (AM) has
been popular across various industries and has gar-
nered significant interest from the academic commu-
nity. The production of value-added parts — which
traditional processing methods cannot produce — and
the reduced waste (increased buy-to-fly ratio) of addi-
tive manufacturing (AM) are the main drivers of this
trend. Fine metal powder is the initial material used
in the SLM process, and it is placed in extremely thin
layers (0.05—0.12mm). A high-precision laser scans the
component contour after each layer, and the powder
is melted by the precisely timed energy input. The
next layer of metal powder is added after the laser has
completely covered the surface and the building plat-
form has been lowered by precisely one layer thick-
ness. This procedure is then carried out once more
until every component has been laser-printed three-
dimensionally, layer by layer. Depending on the size of
the installation location, the complete selective laser
melting building process may take several hours.

Laser beam melting is an additive manufacturing
process in which components are manufactured layer
by layer from powdery material. The SLM process
does not differ fundamentally from the SLS process.
However, unlike selective laser sintering (SLS), the
material powder is not sintered in selective laser melt-
ing (SLM). In the SLM process, the material powder
is locally melted directly at the processing point using
the thermal energy of a laser beam. The installation
space with the powder material is heated to just below
the melting temperature. The working space is usually
filled with a protective gas to prevent the material
from oxidizing. Due to the large temperature differ-
ence between the youngest component level and the
already cooled layers, if the process is carried out in-
correctly, undesirable effects can occur, such as warp-
ing of the component, burns, and so-called curling,
a bending of the component edges. The workpieces
are firmly welded to the base plate using a support
structure to avoid this. This support structure must
later be removed manually. Selective laser melting is
a resource-saving process that produces little waste
because the excess material can be processed through
sieving and largely reused. With selective laser melting
(SLM), the physical 3D object is produced by melting
a metallic powder. The 3D data set is cut into indi-
vidual layers and built up according to the contours of
the digital file. The process is complex and, therefore,
takes several working days.

The technology of direct supply of energy and
material has become widespread in various manufac-
turing industries and beyond. It is more than just 3D
printing. It performs various production tasks, ranging

from coating and repairing components to the complex
production of blanks and parts. It is most widely used
in the aviation industry, aerospace industry, mechani-
cal engineering, shipbuilding, medicine, dentistry, en-
ergy, petrochemical industry, construction of buildings
and structures, production of souvenirs, advertising
industry, etc. Laser surfacing is also used when repair-
ing expensive workpieces. This is relevant for products
made of special nickel alloys. At their price, repairing
the part is more profitable than buying a new one. Due
to the high work precision and minimal thermal load,
the reproducibility will be much higher than that of
classical brewing methods.

Unlike traditional material removal methods, rapid
prototyping technologies aim to create complex prod-
ucts by sequentially adding material(s). Many rapid
prototyping methods are known, and they differ in the
material used and the method of shaping the product.
An innovative method for selective laser melting of a
physical replica of various objects made of metals, al-
loys, and metal matrix composite materials to meet
the requirements of the aerospace, defense, automo-
tive, and biomedical industries. An important direc-
tion in developing selective laser melting technology
is to improve the quality of the formed product. This
is a complex multi-parameter process in which about
130 parameters can be identified that influence the
final result.
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