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EFFECTIVE THERMAL CONDUCTIVITY
OF PARTICULATE COMPOSITE MATERIALS

ŠTEFAN BARTA1∗, PETER DIEŠKA1

On the basis of a mean field approximation method (MFAM) the formula for ef-
fective thermal conductivity of particulate composite was derived. In the case of binary
system, it was shown that there exists the percolation phase transition. The MFAM gives
only classical critical index t near to the percolation phase transition (critical region).
That is the reason for a generalization of the formula for effective thermal conductivity
by introducing parameter t dependent on the volume fraction and in the critical region
complying with the results obtained by lattice Monte Carlo simulations.

K e y w o r d s: thermal conductivity, effective thermal conductivity, volume fraction, per-
colation threshold, percolation phase transition

EFEKTÍVNA TEPELNÁ VODIVOSŤ ČASTICOVÝCH
KOMPOZITNÝCH MATERIÁLOV

Na základe metódy stredného poľa bola odvodená formula pre efektívnu tepelnú vodi-
vosť časticového kompozitu. Existencia perkolačného fázového prechodu bola preukázaná
pri binárnom systéme. Metóda stredného poľa poskytuje iba klasický kritický index t v
blízkosti perkolačného fázového prechodu (kritická oblasť). Toto bol dôvod na zovšeobec-
nenie formuly pre efektívnu tepelnú vodivosť tak, aby v kritickej oblasti parameter t
zodpovedal výsledkom získaným simuláciami Monte Carlo na mriežke.

1. Introduction

The aim of this paper is to derive the relation for effective thermal conductivity
of particulate composite materials whose granules are coated by some other ma-
terial. The particulate composite consists of granules, possibly in a matrix. These
materials have an application in industry. For example, the mixture copper-graphite
particulate composite material [1] is used for electrical contacts carrying current
between stationary and rotating parts of electromotors, generators, seam welding
machines, etc. Special properties of these contacts are required, especially for the
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electrical and thermal conductivity. It was shown that such requirements are sat-
isfied best by a composite material composed of matrix showing high electrical
conductivity while graphite in the form of globular granules creates the secondary
phase in the copper matrix ensuring high sliding properties. For improvement of
adhesion between matrix and the graphite granules, the latters are to be coated by
a suitable material [2] and [3].

For application of these composites it is important to know their mechanical
(effective Young’s modulus [4]), thermomechanical (thermal expansion) and ther-
mophysical (effective thermal conductivity) properties. Before we start to derive
the relation for effective thermal conductivity, we introduce some general remarks
about the composite materials. Generally, the composite material is heterogenous
at the submacroscopic level (for the length scale of linear dimension of granules)
as it is composed of components, which, on the one hand, are spatially separated
from each other (insoluble components) and, on the other hand, are randomly dis-
tributed over the whole sample. Due to this randomness the physical quantities
of the composite on the submacroscopic level are not only dependent on space
coordinates but they are also random quantities. The processes at the submacro-
scopic level are described by phenomenological stochastic equations. The use of
the phenomenological equations requires fulfilling certain conditions. However at
the macroscopic level the composite is usually homogeneous and sometimes even
isotropic and may be characterized by effective parameters independent of space
coordinates. Necessary and sufficient conditions for using effective parameters are
discussed in Beran’s work [5]. In the further text we assume that all conditions for
using the effective parameters are satisfied.

For an experimentalist it is very important to know in which cases the compos-
ite material at the macroscopic level may be characterized by effective parameters
because only in these cases it is justifiable to use the standard methods for their
measurement. If one uses phenomenological equations for derivation of the relations
for effective parameters, then the linear dimensions of granules have to be much
larger than the mean free path of carriers which participate on the transport of
mass, energy and charge. But, on the other hand, they have to be much smaller
with respect to macroscopic linear dimensions of inhomogeneities.

In the process of derivation of the relations for effective parameters, we en-
counter the question how the effective parameters depend on the structure of com-
posite at the submacroscopic level and on the properties of individual components
of composite material, as well. This information is very important, especially for a
technologist. Knowing the relations for effective parameters, it is possible to pro-
duce composite material with the prescribed values of the parameters (materials
“tayloring”). The statistics of the structure of composite at submacroscopic level
is very often unknown, and only the volume fractions are known from the manu-
facturing process.
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The derivation of the relation for effective thermal conductivity is a very diffi-
cult problem. When solving this problem, one has to deal with two difficulties. The
first one is connected with the necessity to know the statistics of the structure of
the composite at submacroscopic level, which is usually unknown. The second one
is connected with the mathematical difficulties of exact calculation of effective ther-
mal conductivity, and, therefore, one is obliged to use approximate methods. One
of those approximate methods is the mean field approximation method (MFAM),
which is used in this paper.

2. Mean field approximation

The mean field approximation method is based on the idea that a randomly
chosen isotropic granule characterized by the thermal conductivity λn is submerged
into an unlimited effective medium, which is characterized by the effective thermal
conductivity λeff . The MFAM assumes that the properties of an effective medium
are not changed by putting the granule in it. The thermal conductivity, as it was
mentioned before, is a stochastic quantity, which is determined by n-point correla-
tion functions. The MFAM does not require knowledge of the n-point correlation
functions, but only the local distribution function, which is determined by the vol-
ume fractions. This fact may be advantageous, but, due to this fact, the method
is only approximate because it uses incomplete information about the statistics of
the structure of the composite at the submacroscopic level. It can be shown that
in the case of a weak inhomogeneity the MFAM may give results of sufficient ac-
curacy. The derivation of the relations for effective thermal conductivity is based
on usage of the stationary heat equation. In the following paper the derivation
of the relations for effective parameters will be based on the non-stationary heat
equation.

3. Effective thermal conductivity of the particulate composite material

We consider granules of globular form whose diameter is sufficiently large
(granule consists of many particles) so we can describe the heat conduction in
the granule by the Fourier law

q = −λ gradT (1)

and by the stationary heat equation

div q = 0, (2)

where q is the heat flow density, λ is the thermal conductivity, T is the thermody-
namic temperature. From relations (1) and (2) the Laplace equation

∆T = 0 (3)
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follows. For the better understanding of
the MFAM, we consider the granules at
first without the coating, and then we
proceed to a more complex case when
the granules of certain components are
coated. As we mentioned before, the
MFAM is based on the idea that the
granule is submerged into an unlimited
effective medium, therefore we take into
account two regions. The first region is
the granule of a globular form with ra-

dius R, the second one is the effective medium (Fig. 1).
The solution of Eq. (3) in the first and second region reads

Tgr = −BE0 · r (4)

and

Teff = −E0 · r +AE0 ·
r

r3
, (5)

respectively. The solutions (4) and (5) should satisfy the boundary condition of
constant gradient of temperature at the infinity. The constants A and B are deter-
mined from the boundary conditions at r = R:

Tgr(R) = Teff(R), (6)

−λ gradTgr · r0 = −λeff gradTeff · r0, (7)

where r0 is the unit vector perpendicular to the boundary. Relation (7) expresses
the equality of the heat flows density. From (4–7) one obtains

B =
3λeff

2λeff + λ
. (8)

Using relations (4) and (8) one can write

gradTgr = −
1

1 +
λ− λeff

3λeff

E0 (9)

and

q = −λ gradTgr =
λ

1 +
λ− λeff

3λeff

E0. (10)
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If the composite on the macroscopic level is homogeneous, we can consider:
Assumption I : The probability to find the granule of the nth component in

certain place is equal to the volume fraction cn of the nth component. The proba-
bility of finding the granule in a certain place is independent of the probability of
finding another granule in another place.

This is truth when the granules are spread out uniformly through the whole
sample.

Assumption II : Due to macroscopic character of the instrument for measuring
the temperature, the average temperature is measured over a large number of
granules of different components. Due to this assumption we can write 〈Tgr〉 = Texp.

Using Assumptions I and II, we can average relations (9) and (10):

grad 〈Tgr〉 = −

〈
1

1 +
λ− λeff

3λeff

〉
E0 = −

N∑
n=1

cn
1

1 +
λn − λeff

3λeff

E0, (11)

〈q〉 =
N∑
n=1

cn
λn

1 +
λn − λeff

3λeff

E0. (12)

E0 is expressed from (11) and substituted into (12):

〈q〉 = −

N∑
n=1

cn
λn

1 +
λn − λeff

3λeff
N∑
n=1

cn
1

1 +
λn − λeff

3λeff

grad 〈Tgr〉. (13)

If the conditions for using the effective thermal conductivity are fulfilled, one can
write the Fourier’s law in the form

〈q〉 = −λeff grad 〈Tgr〉 = −λeff gradTexp. (14)

Comparing (13) and (14), we obtain

N∑
n=1

cn
λn

1 +
λn − λeff

3λeff

= λeff

N∑
n=1

cn
1

1 +
λn − λeff

3λeff

. (15)
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From (15) it immediately follows that

N∑
n=1

cn
λn − λeff

1 +
λn − λeff

3λeff

= 0. (16)

Until now it is not known what is the physical meaning of quantity E0. Eq. (16)
yields

N∑
n=1

cn
1

1 +
λn − λeff

3λeff

= 1, (17)

and from it and (11) immediately follows that

E0 = − grad 〈Tgr〉 = − gradTexp. (18)

Granule

R1i

R2i

U0

Surface layer

Effective medium

Fig. 2

From Eq. (16), the effective thermal conductivity λeff can be calculated. The same
result was obtained in [6]. The novel
contribution of this paper is the deriva-
tion of the relation for effective thermal
conductivity in the case when the gran-
ules of certain component are covered
by the surface layer of another mate-
rial. We will apply the modified method
used in [7]. In this case three regions
should be considered (Fig. 2). We de-
note the thermal conductivity of ith-
component granule as λi and that of the
surface layer as λmi. The radius of gran-
ule is R1i and together with the surface
layer, R2i. The solution of Eq. (3) for
individual regions is the following:

– in the region of the granule

Ti = −BE0 · r (19)

– in the region of the surface layer

Tmi = −CE0 · r +DE0 ·
r

r3
(20)
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– in the region of the effective medium

Teff = −E0 · r +AE0 ·
r

r3
. (21)

Constants A, B, C and D are determined from the boundary conditions:
– at r = R1i

Ti(R1i) = Tmi(R1i), (22)

−λi gradTi · r0 = −λmi gradTmi · r0, (23)

– at r = R2i

Tmi(R2i) = Teff(R2i), (24)

−λmi gradTmi · r0 = −λeff gradTeff · r0. (25)

From (19–25) it follows:

C =
1 + 2γi
1− γi

·
3λeff

(2λeff + λmi)
1 + 2γi
1− γi

+ 2σi(λmi − λeff)
, (26)

D

R3
1i

=
3λeff

(2λeff + λmi)
1 + 2γi
1− γi

+ 2σi(λmi − λeff)
(27)

where

γi =
λmi

λi

and

σi =

(
R1i

R2i

)3

.

The granule with the surface layer is substituted by the equivalent granule so that
the heat flow through the hemisphere of radius R2i must be the same:∫

Ω(R2i)

q · dS =
∫

Ω(R2i)

λmi[CE0 −
D

R3
2i
E0 + 3

D

R3
2i
E0 · r0r0] · r0dS =

=
∫

Ω(R2i)

λmi

[
C + 2

D

R3
2i

]
E0 · dS =

∫
Ω(R2i)

qequiv · dS,
(28)
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where we used (20). From (28) it is obvious that the equivalent heat-flow density
is expressed by the relation

qequiv = λmi

[
C + 2

D

R3
2i

]
E0 =

λ∗i

1 +
λ∗i − λeff

3λeff

E0, (29)

where the equivalent thermal conductivity, λ∗i , is expressed by the following relation

λ∗i = λmi
1 + 2γi + 2σi(1− γi)
1 + 2γi − σi(1− γi)

. (30)

Relation (29) was obtained by using (26) and (27). Relation (29) is similar to
relation (13) if we use (17). If the first N1 components consist of coated granules,
the effective thermal conductivity can be obtained as a solution of the following
equation:

N1∑
n=1

cn
λ∗n − λeff

1 +
λ∗n − λeff

3λeff

+
N∑

n=N1+1

cn
λn − λeff

1 +
λn − λeff

3λeff

= 0. (31)

4. Analysis of the obtained results

We shall analyse the case of the binary system. From (31), for the binary
system it follows:

λeff = λ∗1
1
4

{
[3c− 1− (3c− 2)r] +

√
[3c− 1− (3c− 2)r]2 + 8r

}
, (32)

where c is the volume fraction of the 1st component, r =
λ2

λ∗1
. If λ2 = 0, the expres-

sion (32) transforms to the following form:

λeff = 0; c ≤
1
3
, (33)

and

λeff =
3
2
λ∗1

(
c−

1
3

)
; c >

1
3
. (34)

The quantity ck =
1
3

is called the percolation threshold. For c < ck the granules

of the first component form clusters which are separated from each other and,
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therefore, a sample is thermally non-conducting (λeff = 0). At c = ck some clusters
connect themselves together and form a percolation cluster, which is spread out
through the whole sample. From this moment λeff is increasing with volume fraction
c. The λeff plays the role of an order parameter. This effect is called percolation
and at c = ck the percolation phase transition takes place. The detailed overview
of percolation is given in [8]. In Table 1 the percolation thresholds for different
types of lattices are given. These values were obtained by Monte Carlo simulations
on different lattices. From the renormalization group analysis, instead of (34), one
obtains

λeff =
3
2
λ∗1

(
c−

1
3

)t
; c >

1
3
. (35)

Ta b l e 1

Lattice ck t

Honeycomb 0.7 1.15

Square 0.59 1.15

Triangular 0.5 1.15

Simple cubic 0.325 1.725

Body-centered cubic 0.25 1.725

Face-centered cubic 0.195 1.725

It is interesting to note that the parameter t depends only on dimensionality

of the sample as it is shown in Table 1. MFAM yields the value ck =
1
3

, which is

close to that of the simple cubic lattice.

In the reality, λ2 is never equal to zero, and, therefore, we cannot observe

the percolation phase transition. The smaller is the ratio r =
λ2

λ∗1
the better is the

percolation process observable. This fact we shall illustrate in detail, but at first
we generalize the relation (31) in this way: From the Table 1 it is seen that the

percolation threshold can have different values, and, therefore, instead of
1
3

the

parameter g will be used. We rearrange relation (31) in the following form:

N1∑
n=1

cn
λ∗n − λeff

(1− g)λeff + gλ∗n
+

N∑
n=N1+1

cn
λn − λeff

(1− g)λeff + gλn
= 0, (36)
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and further generalize it as follows:

c1
1− x

1
t

(1− g)x
1
t + g

+
N1∑
n=2

cn
r∗

1
t − x

1
t

(1− g)x
1
t + gr∗

1
t

+

+
N∑

n=N1+1

cn
r

1
t − x

1
t

(1− g)x
1
t + gr

1
t

= 0,

(37)

where x =
λeff

λ∗1
; r∗n =

λ∗n
λ∗1

; rn =
λn

λ∗1
. In the generalization of Eq. (36) we exploited

that λeff = λ2 for c = 0, λeff = λ∗1 for c = 1, λeff = λ, if λ∗n = λn = λ for arbitrary
n and c and for r = 0 λeff ≈ (c − g)t (35). The above-mentioned requirements
uniquely determine the generalized equation (37).

For the binary system, Eq. (37) simplifies

c
1− x

1
t

(1− g)x
1
t + g

+ (1− c)
r

1
t − x

1
t

(1− g)x
1
t + gr

1
t

= 0. (38)

The solution of Eq. (38) is the following:

x =

{
c(1− r

1
t ) + (1− g)r

1
t − g

2(1− g)
+

+

√[
c(1− r

1
t ) + (1− g)r

1
t − g

2(1− g)

]2

+
g

1− g
r

1
t

}t
.

(39)

The computer simulations of the lattice models show that near to the perco-
lation threshold (critical region) parameter t is equal approximately to 1.7 in the
three dimensional case. The solution of Eq. (38) for r = 0 is the following:

x = 0, c ≤ g (40)

and

x =

(
c− ck
1− g

)t
, (41)

where ck = g is the percolation threshold. The computer simulations also show that
for increasing c the parameter t is approaching 1. From this fact it follows that t
is dependent on c.

Now we show for which condition the percolation, in a certain sense, may be
observed. For this aim we find the value of c∗ at which the second derivative of the
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function x(c) has the maximum. For analytical calculations we put t = 1. From
(39) it follows:

y2 =

[
c(1− r) + (1− g)r − g

2(1− g)

]2

+
g

1− g
r, (42)

where we have used

y = x−
c(1− r) + (1− g)r − g

2(1− g)
.

Differentiating equation (42) according to c one obtains

y
dy
dc

=
1
4
c(1− r) + (1− g)r − g

(1− g)
1− r
1− g

. (43)

After the second and third differentiation of Eq. (43) we can write(
dy
dc

)2

+ y
d2x

dc2
=

1
4

(
1− r
1− g

)2

. (44)

3
dy
dc

d2x

dc2
+ y

d3x

dc3
= 0. (45)

For c = c∗, from (45), it follows that

dy
dc

∣∣∣∣
c=c∗

= 0 (46)

because we assume that
d2x

dc2

∣∣∣∣
c=c∗

is nonzero. Introducing (46) into (43) we get

c∗ =
g(1 + r) − r

1− r
. (47)

Inequality 0 < c∗ < 1 implicates restrictions for the parameter r of the
percolation-like behaviour of a composite system:

r <
g

1− g
, r <

1− g
g

. (48)

From (47) it follows: the smaller is r the better c∗ ≈ g holds. If we denote c∗ as the
g(1− α), where α is considered as � 1, then

r =
gα

1− g(2− α)
≈ g

α

1− 2g
,
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Fig. 3. Plot of
d2x

dc2
and relative effective

thermal conductivity vs. volume fraction

of the filler, c; r = 0.1; thin line –
d2x

dc2
;

thick line –
λeff

λ1
.

Fig. 4. Plot of
d2x

dc2
and relative effective

thermal conductivity vs. volume fraction

of the filler, c; r = 0.01; thin line –
d2x

dc2
;

thick line –
λeff

λ1
.

where relation (47) was used. From (47) it follows that for g =
1
3

and r =
1
2

the

parameter c∗ = 0. But for g =
1
3

and r <
1
2

the parameter c∗ > 0. In Figs. 3 and 4

the plots of x and
d2x

dc2
vs. c for g =

1
3

and r = 0.1; 0.01 are depicted. According to

relation (47) for g =
1
3

and r = 0.1, the value of c∗ is equal to
1
3

0.89 and for r = 0.01

c∗ =
1
3

0.99. From that we see that the smaller is r the nearer is to the percolation

threshold c∗. The plot of
d2x

dc2
is asymmetric according to c∗ what means that at

the percolation phase transition (percolation threshold) the dependence of x on c

changes. In [9] and [10] relation (39) was tested according to experimental data.
The parameters g and t were considered as free parameters which were determined
from experiment. It was shown that formula (39) describes the experimental results
quite well. The parameter t was considered as independent of c. In Fig. 5 are shown

the plots of x on c at g =
1
3

, t = 1 and t = 1 +
T − 1
g(1− g)

c(1− c). The form of the

function t(c) was determined from the conditions: t = 1 at c = 0 and c = 1; t = T

at c = g. The thin curve corresponds to r = 0.01, t = 1 and g =
1
3

, the thick one to
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Fig. 5. Relative effective thermal conduc-
tivity vs. volume fraction of the filler, c;
thin line – t = 1; thick line – t = 1 +

+
T − 1
g(1− g)

c(1− c).

r = 0.01, g =
1
3

and T = 1.7. The value of the parameter T was chosen so that in

the critical region (near to percolation threshold) t = 1.7 as it is seen from Table 1.
The mean field approximation method, as we mentioned, is approximate. It

gives only the basic form of the relation for the effective thermal conductivity. Fur-
ther improvement can be done by a generalization of the formula (36), which would
describe better the dependence of the thermal conductivity on the volume fraction
of the filler. Therefore, the generalized formula (39) has to be tested for experi-
mental data. After the successful test it may be used by the technologist for design
of composition of novel composite materials, which would meet the application
requirements.

5. Conclusion

– The formula for the effective thermal conductivity of particulate composite
with coated granules of certain components was derived.

– The formula was generalized by introducing the parameter t which is depen-
dent in the case of binary system on the volume fraction of the filler.

– In the case of a binary system an analysis of the obtained results was per-
formed.

– It was shown that the
d2x

dc2
has the maximum for certain value of the volume

fraction c∗. The value of c∗ is near to the percolation threshold if certain conditions
are fulfilled.
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