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MICROMODELLING OF CREEP IN COMPOSITES
WITH PERFECT MATRIX/PARTICLE INTERFACES

JIRT SVOBODA, JIRI VALA

A new micromechanical model of creep in composites with perfect matrix/particle
interfaces is suggested. The model assumes that particles are harder than the matrix and
the plastic deformation in the matrix is due to time-dependent slip in discrete slip systems.
Slip in the matrix causes the deposition of dislocations on the matrix/particle interfaces
hindering further slip. Creep in the composite is conditioned by dynamic recovery due
to the slip/climb motion of the dislocations along the matrix/particle interface to places
where the dislocation loops disappear. The mentioned processes are described by proper
equations. The equations are solved by finite element method (FEM) and a special FEM
code is used for the micromodelling of creep in superalloy single crystals.

MIKROMODELOVANI CREEPU V KOMPOZITNICH
MATERIALECH S DOKONALYM ROZHRANIM
MEZI MATRICI A CASTICEMI

Je navrzen novy mikromechanicky model creepu v kompozitnich materidlech s do-
konalym rozhranim mezi matrici a ¢asticemi. Model pfedpoklddd, ze Castice jsou tuzsi
nez matrice a plastickd deformace matrice vznika Casové zavislym skluzem v diskrétnich
skluzovych systémech. Skluz v matrici zpusobuje hromadéni dislokaci na rozhrani mezi
matrici a ¢asticemi bréanici dalsimu skluzu. Creep v kompozitnim materidlu je podminén
dynamickym zotavenim zpusobenym nekonzervativnim pohybem dislokaci podél rozhrani
mezi matrici a ¢asticemi na mista, kde disloka¢ni smycky mizeji. Zminéné procesy jsou
popsany odpovidajicimi rovnicemi. Rovnice jsou feSeny metodou koneénych prvki; pro
mikromodelovéni creepu monokrystala superslitin je pouzit specidlni program vychazejici
z této metody.

1. Introduction

The most effective way how the creep resistance of metals can be improved is
their reinforcement by hard particles. The particles can precipitate in the matrix
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during the heat treatment of the material as in the case of superalloys. The par-
ticles can also be added into the matrix or they precipitate in the matrix during
solidification as, e.g., in case of metal-matrix composites.

The creep resistance of composites depends critically on the properties of the
interfaces between the matrix and particles. In case of practically non-wetting par-
ticles the matrix/particle decohesion can easily occur during creep [1] and the creep
properties of the composite are worse than those of the matrix. The non-coherent
interface with good wetting properties is the next type of the interface. Such inter-
face can act as a channel of high diffusivity and a place of easy sliding analogous to
grain boundary sliding. Moreover the interface can act as a source and sink of va-
cancies and it can also absorb dislocations. The creep properties of such composites
have been studied in [2]. In the paper it was shown that the creep resistance of the
composite can be significantly influenced by the properties of the matrix/particle
interface which is in accord with the earlier work of Goto and McLean [3]. The
interfaces with low diffusivity and low capability of sliding imply the best creep
properties of the composite. The interfaces with practically zero diffusivity and
zero capability of sliding are realized either as coherent interfaces (semicoherent
if misfit dislocations are deposited on the interface) or as interfaces of the type
Al/A1,03. In the case of Al/Al;O3 interface, there is a strong reaction between
the atoms of both phases and they form a perfect contact although their lattices
and their lattice orientations are different. From the phenomenological point of
view the coherent interfaces and interfaces of the Al/Al,O3 type can be treated as
perfect interfaces with zero diffusivity and zero capability of sliding. They cannot
act as sources and sinks of vacancies and of dislocations. Such interfaces represent
usually an effective barrier for dislocations in the matrix. If there are no sources
of dislocations in the particles, the particles behave like hard particles which is the
case of superalloys. In case of metal matrix composites the ceramic particles are
also much harder than the matrix.

The problem of creep in composites with perfect interfaces has been modelled
by FEM in [4] (metal matrix composites) and in [5, 6] (superalloy single crystals).
The authors treat the creep in the matrix as non-linear viscoplasticity. The proper-
ties of the matrix are assumed to be isotropic and except the exponent in the power
law the matrix behaves like a very viscous fluid. During creep in the composite
significant pressure gradients are developed in the matrix. In the proximity of the
particle the matrix shears along the interface although in reality such slip systems
need not be available.

If the particles are harder than the matrix, the composite under creep con-
ditions deforms by slip in the matrix and the dislocations remain deposited on
the matrix/particle interface or in its vicinity. The deposited dislocations cause a
back-stress which hinders further plastic deformation in the matrix. Thus, creep
of the composite is conditioned by dynamic recovery of the dislocation structure.
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If the dislocations cannot cut the particle, the only possible recovery mechanism is
climb /slip motion of dislocation loops along the matrix/particle interface to places,
where the loops can shrink and disappear [7, 8]. This motion of dislocation loops is
connected with the transport of atoms which are collected and deposited at jogs on
moving dislocation loops. The transport of atoms represents diffusional creep con-
trolled by lattice diffusion in the matrix. On the other hand, the diffusional creep
is conditioned by the existence of dislocations with jogs acting as only sources or
sinks of atoms on the matrix/particle interface.

It is obvious that the description of creep in the matrix by non-linear vis-
coplasticity represents only a rough approximation of reality. The main aim of the
present paper is to incorporate the processes described in the previous paragraph
into the FEM code. To reach this aim it is necessary:

(i) to apply the equations for the time-dependent crystal plasticity in the
matrix,

(ii) to derive the equations for the rate of deposition of dislocations from each
slip system at each point of the matrix/particle interface due to crystal plasticity,

(iii) to develop the model of recovery due to climb/slip motion of dislocations
along the matrix/particle interface involving the changes of the dislocation density
at each point of the interface,

(iv) to develop the mathematical method coupling the problems of elasticity
and of (i)—(iii).

The code is applied to the modelling of creep in superalloys.

2. Physical background
2.1 Slip rate in the matrix

First approach on crystallographic modelling of creep in superalloys was pre-
sented by Ghosh et al. [9,10]. The authors did not reflect the two-phase structure
of the superalloys and recovery. Creep of the superalloy was treated as a coopera-
tion of crystallographic slip and damage.

We assume that there are N slip systems in the matrix given by the unit
normals to the slip plane c* = (ck,ck, ck) and by the unit vectors of slip directions
a* = (a¥,ak,ak), k =1,..., N. The resolved shear stress 7% in the slip system is

Z 04j@ l J’ (1)

3,j=1

where ¢ is the local stress tensor. The force per unit length driving the dislocation
slip is given by

K,k
=B - ”7» 2)
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where [ is the magnitude of the Burgers vector Ba*, +y is the energy of dislocation
per unit length and k* is the curvature of the dislocation line. For the energy of
dislocation per unit length the expression '

7= 5GP 3

is usually used where G is the elastic shear modulus. The term yx*/g3 is called
Orowan stress, 7& . and it is extremely important in systems where the ma-
trix between particles forms very thin layers like in superalloys. In this case the
curvature of the leading dislocation segment, the motion of which causes plastic
deformation of the matrix, is very high. If h is the thickness of the matrix channel
oriented in (001) direction and {111} are the slip planes, then

K.k = ——2\/5
=5

2GH
7-(k)rowa.n = \/;T . (5)

The velocity of the leading dislocation segment can be assumed to be in the first
approximation proportional to the term (7% —7& )" where n > 1 is the stress
exponent. Further we assume that the density of the leading dislocation segments
is constant and thus the creep rate in the matrix is proportional to the term
(7% — 78, owan)”- This assumption is not fulfilled in the very early stage of creep
in superalloy single crystals which exhibit the incubation period. The virgin single
crystal is nearly dislocation free and the mobile dislocations must first multiply by
slip. Such effects are not studied in this paper.

In the frame of the small-strain approximation the creep rate (the “dot” symbol
is reserved for the time derivative) of the matrix corresponding to the k' slip
system can be expressed as

(4)

and the Orowan stress is then

Efg = A(Tk - T(I%rowan)ib?j ’ (6)

where A is a proportionality constant, (...)+ denotes the positive part of (...) in
sense () for(.)
i s or (...)>0,
il = {0 otherwise 0

and for the simplicity .
by = S(abeh + k) ®
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2.2 Deposition of dislocations

In materials with low fraction of reinforcing particles, the dislocations form
usually the subgrain structure inside grains during creep. The subgrain boundaries
are not fixed and the subgrain size depends on the history of the specimen.

In our treatment of composite materials, we suppose that the matrix forms a
fine skeleton of the thickness much lower than the typical subgrain size. In super-
alloys the thickness of matrix channels is about 0.05 pm, while the typical subgrain
size in crept materials is about 1 um. The fact that the thickness of the matrix
skeleton is lower than the typical subgrain size has the following consequences:

e The creep properties of the matrix can be completely different from those of
the matrix material on its own.

e No subgrain structure will be formed in the matrix.

e The rate of generation of dislocations in the composite is determined by gra-
dients of the slip rate in the individual slip systems. If the matrix/particle
interfaces are effective barriers for the dislocation slip, the matrix/particle in-
terfaces are the places of extremely high gradients of the slip rate and thus the
places of deposition of dislocations.

During creep in the composite the dislocations are produced by slip in the ma-
trix and annihilated by recovery. In the model we assume that the dislocations are
localized only on the matrix/particle interface. This assumption is later confirmed
by computation of creep in superalloys.

The dislocations deposited on the matrix/particle interface are the mixture
of dislocations corresponding to the various slip systems. The dislocations corre-
sponding to the k" slip system are characterized by the Burgers vector 3a*, by
the dislocation line which is the section of the slip plane and the matrix/particle
interface and by the dislocation density p* (in units m/m?; 1/p is the distance
between dislocations). As Ba*, ¢* and the matrix/particle interface are assumed
to be fixed in the frame of the small-strain approximation, the local densities p*
are parameters which describe unambiguously the actual dislocation structure. As-
suming no slip in the particle, the rate of generation of dislocations p** must be
proportional to the slip rate of the matrix in the k" slip system in the vicinity of
the interface. Analogously as in [11], it can be derived (see Appendix) that

\/ 1= (Ck : n)2 : (Tk - T(’:c)rowan)i ’ (9)

where n means the vector of unit normal to the matrix/particle interface. Scalar
product of vectors c¥,n is used here.

Pt =

>
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2.3 Recovery

Recovery represents a process during which the dislocation density decreases
due to annihilation of dislocation dipoles or shortening of dislocation lines. The
majority of models of recovery are designed for non-reinforced materials in which
the dislocations form subgrain boundaries. The models are summarized in [12].
A closed connection with recovery in superalloys can be found in the paper by
Mukherji and Wahi [13] dealing with climb of dislocations on the matrix/particle
interface. The climb resistance is described by a factor given by the increase of the
dislocation length due to dislocation climb over the particle. The model does not
involve the kinetics of climbing. During the recovery the dislocation loops move
nonconservatively along the matrix/particle interface to places where the loops can
shrink and disappear. This idea has been proposed first by Dlouhy et al. on the
basis of experimental and theoretical works [7,8]. In the analysis the authors use
the following simplifications: 1) the process of recovery is described in a global way
by a characteristic time, ii) diffusional creep connected with recovery is not taken
into account.

The recent models do not offer a detailed description of recovery involving the
changes of the dislocation density in time at a given point of the matrix/particle
interface. Such model has been developed and it is presented in this subsection.

In our model we assume that during its nonconservative motion the whole
dislocation loop always lies in its slip plane. In reality it is not true. However, if
we are not interested in the exact shape of the loop, but in the global motion of
the loop, the assumption is plausible. Thus, the dislocation loop is determined by
the section of the slip plane with the particle surface. The position and shape of
the loop is determined by one coordinate &* in the direction of c*.

Let us consider a point at the dislocation loop on the matrix/particle interface
having the local normal n. The force g acting on the interface unit area has the
components

3
% =) oyn;. (10)

=1
Let us consider one fixed k from {1,..., N} now. In this case the index k will be

omitted. If the coordinate £ of the loop changes by d€, the point at the loop moves
by the distance
dg

S

along the interface. Then the work dL released by moving of the loop on the
account of the stress is given by

3 3
_ Basdodn = e d % dn
A= § S adudedn =53 aude f LT, (12)

(11)
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where §...dn is calculated as the curve integral along the whole loop. The total
force F' acting on the dislocation loop in the direction ¢ follows then from the
equation

_dL_ d o s Pag dn _ d
S IR by e - LT

The second term in (13) expresses the change of the energy due to the change of
length of the loop. The nonconservative motion of the dislocation loop involves
climbing processes which are connected with diffusional transport of atoms. To
move the dislocation along the interface, it is necessary to deposit a layer of atoms
on the interface of the thickness 3a-n (see [14]). Jogs at dislocations serve as only
sources and sinks of atoms. We assume a certain mean distance between jogs w. If
the loop moves with the velocity £, the total diffusive flux (in m3/s) into the jog is

J=w (14)

B S

The diffusion is driven on the account of the force F' from (13). The diffusion is
a dissipative phenomenon which changes the power F¢ into the heat. The heat
production R due to the diffusive fluxes j (in m/s) is given by [15]

_ KT

E=2a /.

§2dv, (15)

where D is the lattice diffusion coefficient, K the Boltzmann constant, T' the ab-
solute temperature, €} the atomic volume and V the volume in which diffusion
occurs. The decisive part of the heat is produced in the vicinity of the jog. If we
suppose that the diffusion occurs in the half sphere of the radius A in the matrix
around the jog (the diffusion does not occur in the particle), the diffusive flux j in

the distance A from the jog is P

Then the heat production in the half sphere is
M ol KTJ? (1 1 KTJ?
jog — —— o b Rkl (LAY PP L L 1
™ = Da /ﬂ 2N A = 5 ba (ﬂ A) 2r DO i

From this equation it follows that for the radius A > 3 its magnitude plays neg-
ligible role in the heat production. It can be further estimated (see [14]) that the
diffusive transport of atoms in the matrix to the distance of the order of size of
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the particle does not contribute to the heat production significantly. Thus the heat
produced by the moving dislocation loop is given by

1 ; KTwé? [ (a-n)®> dpy
loop P jog —
o w fR a4 2nDOB ) 1—(c-n)? (18)

The rate ¢ describing the motion of the loop can be expressed from the condition
of energy conservation: the power produced by the force F' dissipates into the heat
Rl°°P je.

F¢ = Rloop (19)

3
- (oot fo) ) (B ). o
c-n) dé 2rDQB ] 1-(c-n)

It is necessary to point out that the assumption about the loop remaining
during its motion in the slip plane implies the fact that the total volume of atoms
collected at the loop equals the total volume of atoms deposited at the loop. In
other words, the motion of the loop does not require any extra sources or sinks
of atoms. The assertion can be proved by the following reasoning, which assumes
that the dislocation loop can move in two ways:

1. by the above mentioned nonconservative motion,
2. by shrinking of the loop by slip and expansion of another loop in another slip
plane.

The second way represents two parallel cuts of the particle which do not require
any extra source of atoms. Thus, also the first way cannot require any extra source
of atoms.

In the reality, all dislocations need not form whole loops around the particle;
in some cases only a dislocation segment can be in contact with the particle. Phe-
nomenologically this can be expressed by the fact that dislocation density p varies
along the section of the interface with the slip plane. Also in this general case it
is reasonable to assume that between two slip planes the number of atoms remains
constant. This has the consequence that in places with low dislocation density the
dislocation must move along the interface quicker than in places of high dislocation
density.

Let us introduce the number v of dislocations going through the slip plane
in one second. The rate v depends on the coordinate &; v is constant around
the particle for a given £. The relative displacement rate Aw between the matrix
and the particle due to the nonconservative motion of dislocations connected with
deposition or collection of atoms on the interface is

Aii(§) = Pu(€)a; . (21)

or
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The work of the forces on the interface per second in the area between & and £ +d¢

is
dpstress — df% q- Au d’? ) (22)
1-(c n)

The decrease of energy of dislocations per second due to the change of length of
dislocations is

; d
disl _ __
dP9 = 70d£d§ fdn. (23)

The expression - 4 (dpstress 4 qPdis!) represents the driving force for the motion of
dislocations between slip planes characterized by € and £+d&. To evaluate the heat
production, it is necessary to calculate the total flux into each jog at dislocations.
It is given by (14) where £ is replaced by v1/1— (¢- n)2/p. The heat production
corresponding to one jog is then

KTpBw

jog — "~ (a.m)20?.
R 2n D (a-n)%v (24)
The total heat production in the volume between ¢ and £ + d¢ is
2 a¥ .
_ 4 ijog p dn _ KTpwv?d¢ (a-m)? «dy ' (25)
1-(c-n)? 2r D p/1- (c-m)?
From the condition
dPstress I deisl =dR (26)

v can be evaluated; it results

2nDSY ‘?{ a-q dn d f f (a-m)? dp
— —~v— ¢ d _ 27
KT,Bw('B V1-(c-n)? 7 L pV1-(c-n)? 7
For dislocations from N slip systems, the relative displacement rate between the
matrix and the particle is given (see (21)) by

Aty (€) = Z Bk (&)af (28)

From the continuity equation it follows that the rate of a decrease of the dislocation
density due to recovery is given by

-k— d’U

V1= (e, (29)
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3. Outline of the model

The model solves the cooperation of elasticity, time-dependent crystal plastic-
ity and recovery of the dislocation structure on the matrix/particle interface. The
matrix and the particles can have different elastic constants and different parame-
ters of the crystal plasticity. In this paper no plasticity in the particles is assumed.
Further, it is supposed that internal stresses exist in the composite.

Immediately after the application of the external load the dislocation densi-
ties on the matrix/particle interfaces are taken to be zero and the stress state is
determined by elasticity as the superposition of the external stress and the internal
stress. The internal stress is represented by coherency stress in case of superal-
loys or by thermal stress in case of metal matrix composites. The stress in the
matrix determines the slip rate in the matrix (see (5)) and the rate of generation
of dislocations on the matrix/particle interface (see (6)). The actual stress state
and the actual dislocation densities on the interface determine the rate of recovery.
Recovery leads to a decrease of the dislocation density (see (29)) and to a relative
displacement between the matrix and the particle (see (28)). Thus, the rate of
change of the dislocation density on the interface for the k*® slip system is given
by

pk = pk+ _ ﬁk_; (30)

p*t and p*F~ are given by (9) and (29), respectively. In the steady state the terms
p*¥t and p*~ are compensated and the dislocation density no longer depends on
time.

4. Mathematical solution

The mathematical solution of the problem required to develop an original
mathematical approach and the FEM code based on small strain approximation.
The mathematical treatment cannot be completely described in this paper; some
formulations and results have been presented in [16], the more detailed study on
the solution of this problem including existence and convergence theorems will be
published in the specialized journal [17].

The general approach is based on the integral formulation of the following five
types of equations.

1. Equations of principle of virtual displacement rates for materials consisting
of 2 phases (jumps in geometrical configuration at matrix/particle interfaces must
be allowed). These equations involve the equilibrium conditions on the surface
of the unit cell and on the matrix/particle interface and the Cauchy differential
equilibrium conditions.

2. Constitutive equations for stress components, making use of the serial
Maxwell model with one linear elastic and one nonlinear viscous parts. The linear
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elastic part is given by the Hooke law for cubic crystals with the well-known elastic
constants C1y, C12 and Cyq. Then for any i =1,2,3

i = Cr1(€is — €is) + (1 — 045)Cr2(&55 — €j5) (31)
and for any ¢, = 1,2,3 such that ¢ # j
05 = Caa(éij — €ij) (32)

hold; in these relations ¢ is the total strain rate tensor and § the Kronecker symbol.
It can be verified (see [18]) that in orthogonal decomposition of the total stress ten-
sor ¢ into the volumetric and deviatoric components only the constitutive equations
for deviatoric components are nonlinear.

3. Compatibility conditions for geometrical configuration on the matrix/part-
icle interfaces expressed by (28).

4. Equations for the kinetics of the displacement between the matrix and the
particle due to recovery given by (27).

5. Equations for the evolution of the dislocation density described by (30).

The derived system of integral equations is of hyperbolic type, but it can be
analyzed as the system of equations of evolution using the Rothe method of dis-
cretization in time. This makes it possible to convert our problem into the searching
for solutions of certain sequences of more simple time-independent systems. Such
systems can be analyzed by means of the FEM; some nonstandard techniques must
be applied to handle the unknown contact loads and the geometrical discontinuities
on the matrix/particle interfaces. Since no appropriate FEM code suitable for our
purpose has been known to the authors, the original software package CDS for
PC’s and workstations in C++ language has been developed.

5. Numerical example and discussion

Let us consider a simple periodic 2-D material structure consisting of square
particles of size 0.45 um separated by matrix channels of the thickness of 0.05 um.
Such dimensions are typical for superalloys. Due to symmetry of the structure
the area 0 < z; < 0.25 um (¢ = 1,2) can be used as a unit cell. The structure is
assumed to be independent on the z3 coordinate.

The structure is loaded by external tensile stress in x5 direction. Moreover the
initial volumeric strain of magnitude —10~2 is present in the particle. This strain
introduces the same internal stress into the composite as that caused by misfit
—1072 and zero density of misfit dislocations at the interface.

The elastic constants in both materials (see (31) and (32)) are used for the
simplicity the same: Cy; = 18 x 101°Pa, Cj2 = 12 x 10° Pa, Cy4 = 10 x 10'° Pa.
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For the slip in the matrix channels (see (6)) the parameters A = 5 x 107! Pa/s,
n =1 and 78, vy = 1.5 x 108Pa (k = 1,2) are used. Two slip systems are
assumed characterized by unit vectors a' = ¢®> = (=1/v/2,1/v/2,0) and a? = ¢! =
(1/4/2,1/+/2,0). The magnitude of the Burgers vector is 8 = 2.5 x 1071°m. The
typical value of the diffusion factor in the expression for recovery (see (27)) d =
21 DN/ (KTwp) is set to 2.4 x 10~"m3s~1J~1. The value of the factor corresponds
to the coefficient of autodiffusion in the matrix at the temperature 850°C and
w = 3083. The choice of v in (27) is not substantial in our cases.

For an arbitrary time all strains, stresses, dislocation densities, and displace-
ment rates related to the initial geometric configuration can be expressed as func-
tions of coordinates z; and x2 (except displacement rates in z3 direction that are
linear functions of z3).

= —102 d=2.4x10"m3s"13-!
e Z
Dind3 =
glo g d=2.4x10%m3s71J"!
E 800 MPa gw 3
o 700 MPa 2
& 600 MPa & d=2.4x10"7m3s" 15!
g104 2
g 500MPa S 104
g ]
450MPa d=2.4x10"8m3s" 17!
10°5 " . 105 ; .
0 5 10 15 20 0 5 10 15 . 20
time [s] time [s]

Fig. 1. Creep rate for different applied Fig. 2. Creep rate for different diffusion
stresses. factors d.

Fig. 1 demonstrates the time evolution of the creep rate for different applied
stresses from the interval (450, 800) MPa. In Fig. 2 the creep rates were calculated
for different diffusion factors d € (2.4 x 1078,2.4 x 107°) m®s~1J~! and the applied
stress 800 MPa. From the figure it can be seen that for the diffusion factor d < 2.4x
x10~8m3s~1J~1 the steady state creep rate is nearly proportional to the diffusion
factor; the diffusion is the controlling mechanism of creep. However, the diffusion
is connected with recovery and, thus, creep under these conditions can be called
the recovery controlled creep.

In the work by Svoboda and Luk&s [14] a simple model of the recovery con-
trolled creep has been developed. The model assumes that the stress states within
the whole particle and within the matrix channels of both types (normal and par-
allel to the applied stress) are homogeneous. For the steady state this assumption
is confirmed by the present paper.
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Fig. 4. Hydrostatic stress ou = 3(011 + 022 + 033).

In Fig. 3 the distribution of the resolved shear stress 71 = 72 (see (1) in the
steady state creep) is plotted for the particle and the channels. The results are
for the applied stress 800 MPa and d = 2.4 x 10" m3s~1J~!. The distribution of
the hydrostatic stress is shown in Fig. 4. Analogously the distribution of other
components can be plotted. It can be concluded that the stresses in the mentioned
areas can really be treated as homogeneous and the assumption on stresses done

in [14] is plausible.

The displacement rates in the z; and x2 directions in the steady state creep

are shown in Fig. 5 and 6. Two facts follow from these figures:
e The rate of plastic strain due to slip is homogeneous in the matrix.
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Fig. 5. Displacement rate, z-direction.

Fig. 6. Displacement rate, zs-direction.

e Jumps in the displacement rates at the matrix/particle interface can be seen.
These jumps are due to recovery. During the motion of dislocations along
the matrix/particle interface the atoms at the interface parallel to the applied
stress are collected, transported by diffusion and deposited at the interface
normal to the applied stress. The motion of the dislocations also causes the
sliding along the interface.

The kinetics of recovery in the model [14] was derived under the assumption
that the dislocation densities at the interfaces normal or parallel to the applied
stress are homogeneous.
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Fig. 7. Dislocation density p* (full line), density of dislocations generated by slip (dashed
line).

Om’!

Fig. 8. Dislocation density p? (full line), density of dislocations generated by slip (dashed
line).

Figs. 7 and 8 offer the full description of the dislocation densities at the in-
terface. Due to the symmetry, the dislocation density of one of the slip system is
symmetric along both axes z; and zo with the dislocation density of the other slip
system. The dashed lines in these figures correspond to the densities of dislocations
generated by slip in the matrix channels during 80s after the loading. The inho-
mogeneities in the dislocation densities are not negligible. In comparison with the
simple model [14] assuming constant dislocation densities on particular interfaces,
the present model gives the rate of recovery slightly lower. However, the difference
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seems to be unimportant, as the exact values of the diffusion coefficient D and of
the mean jog distance w are not available.

The results of recent FEM modelling [5,6] and the present FEM modelling
differ substantially in the stress distribution and in the field of displacement rates.
The results of recent FEM models assuming the viscoplastic flow of the matrix
show the development of pressure gradients in the whole matrix and the shearing
of the matrix along the matrix/particle interfaces. On the other hand, our results
show practically constant pressure (see Fig. 4) in particular matrix channels (with
a “jump” near the particle corner) and the homogeneous plastic strain rate in the
matrix (see Fig. 5 and 6). The incompatibility between the plastic strain rate
in the matrix and zero strain rate in the particle is compensated by collection
and deposition of atoms at the matrix/particle interfaces and by sliding along the
matrix/particle interfaces which are the direct consequences of the recovery.

6. Conclusions

The model of creep in composites taking into account the crystallographic
slip in the matrix and dynamic recovery is presented. The paper is based on the
following items:

1. The matrix of the composite deforms by time dependent crystal plasticity.
The equations for the rate of deposition of the dislocations from individual slip
systems at each point of the matrix/particle interface have been derived.

2. The quantitative description of recovery of dislocations deposited on the
matrix/particle interface due to nonconservative motion of dislocations along the
interface has been developed. The driving force of recovery is a function of the local
stresses on the interface and of the particle geometry. The recovery is controlled
by lattice diffusion dissipating the work of the driving force.

3. The mathematical approach solving the problem of the elasticity and the
time-dependent crystal plasticity and recovery has been developed. The mathe-
matical approach is based on integral formulation of the problem which is suitable
for the solution by FEM.

4. As the commercial FEM packages are not designed to solve such prob-
lems, an original FEM code has been developed in the framework of our research
activities.

5. The FEM code is applied to the modelling of creep in superalloys. The
results are significantly different from the results of recent FEM modelling.
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Appendix

Connection between slip in the matrix and generation of dislocations
on the matrix/particle interfaces

For a fixed k*" slip system (k = 1,..., N) let us consider the vectors a* and c*
and the corresponding tensor b* from (8). Then the tensor of plastic deformation
* has the components (for i,j € {1,2,3})

The slip deformation € is due to discrete slips by Burgers vector 8 in the slip planes
of the distance p where

p= (A2)

o |
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Since n is the unit vector normal to the interface where the dislocations remain
deposited, the distance s between dislocations is given by

P — (A3)

V/1-(cFn)?’
The dislocation density p* on the interface is then

W - (A4)

1
k _ —
p._s

=)

Differentiating (A4) in time and putting this result together with (6) and (A1)
gives (9).



