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Abstract

Selective laser melting (SLM) is widely used for forming metals due to its complexity in
geometrical design. Defects are unavoidably introduced in the manufacturing process, which
requires post-processing. But it leads to grain growth. In this work, a series of post-heat
treatments were used to study the effect of δ phase precipitation on grain growth and mecha-
nical properties in SLM Inconel 718. Optical microscopy (OM), scanning electron microscopy
(SEM) and X-ray diffraction (XRD) were used to study the microstructure of the specimens.
The results showed that the precipitation of the δ phase increased with increasing aging time
and that the growth of grains was inhibited by the δ phase. After 750◦C pre-aging for 48 h,
the solution-treated specimen had the optimum strength and plasticity.
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1. Introduction

Ni-based superalloys are extensively used in gas
turbine disks, rocket motors, spacecraft and nuclear
reactors due to their outstanding oxidation resistance,
corrosion resistance, and mechanical properties. The
Ni-Cr-Fe-based Inconel 718 alloy is the most widely
used superalloy because of its capacity to maintain mi-
crostructural stability up to 650◦C. Inconel 718 with
the austenite matrix γ phase is strengthened by the
principal strengthening γ′′ phase [1]. However, its high
hardness and low thermal conductivity characteris-
tics make it difficult to apply conventional machin-
ing methods owing to tool over-wear and poor work-
piece surface integrity [2]. The actual components have
a variety of complex shapes, and the use of tradi-
tional casting or forging has difficulty meeting the
requirements. Metal additive manufacturing is an ad-
vanced manufacturing method which allows the build-
ing of diverse parts, from either powders or wire feed-
stock, with good accuracy and directly from a com-
puter CAD model without any part-specific tooling
or knowledge [3]. Selective laser melting technology
is often used in the AM of metal materials, fabricat-

*Corresponding author: e-mail address: 20180062@sau.edu.cn

ing components according to a high-energy laser to
melt metal powders layer by layer. Complex geomet-
rical parts with high dimensional accuracy and good
surface integrity can be accurately obtained without
subsequent technological requirements, which is diffi-
cult to achieve by traditional methods [2]. Neverthe-
less, porosity, residual stress and segregation regions
may occur in the SLM process [4]. Many experimen-
tal investigations have been conducted regarding the
microstructures and mechanical properties of laser-
processed Inconel 718 components. Popovich et al.
[5] obtained the microstructure by applying HIP +
H/T post-processing. The mechanical properties be-
came superior to those of cast and wrought Inconel
718. Li et al. [6] found that the hardness of the alloy
first increased and then decreased with increasing so-
lution temperature under the same aging conditions.
However, the post-process may cause grain coarsening
and affect the mechanical properties [7, 8].
The δ phase plays an important role in Inconel

718, and grain growth can be inhibited by controlling
δ phase precipitation. Wang et al. [9] employed a two-
stage annealing treatment in Ni-based superalloy, and
the result showed that mixed grains could be refined
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Ta b l e 1. The chemical composition of Inconel 718 alloy powder (wt.%)

Ni Cr Nb C Mn Mo Co Al Ti Si Cu Fe

52.34 18.68 4.91 0.038 0.031 3.26 0.14 0.43 0.93 0.09 0.018 Bal.

Ta b l e 2. Heat treatment procedures used on SLM Inconel 718

Designation Aging Solution treatment

as-built – –
DA-2 750◦C × 8 h, AC –
DA-3 750◦C × 24 h, AC –
DA-4 750◦C × 48 h, AC –
AS-1 – 1000◦C × 2 h, AC
AS-2 750◦C × 8 h, AC 1000◦C × 2 h, AC
AS-3 750◦C × 24 h, AC 1000◦C × 2 h, AC
AS-4 750◦C × 48 h, AC 1000◦C × 2 h, AC

and homogenized by precipitating some δ phases at
a suitable aging annealing treatment and a relatively
high recrystallization annealing treatment. The pre-
precipitated δ phase promotes the nucleation of static
recrystallization and slows down the growth of grains
[10]. There are many works about the grain growth of
cast or wrought Inconel 718 [11–15], but a few about
SLM-IN718. In this paper, the microstructures and
δ phase precipitation under different heat treatments
were investigated. Then, hardness and stress rupture
testing were further conducted to study the effects of
the δ phase on grain growth and mechanical proper-
ties.

2. Materials and methods

Gas-atomized IN718 powders with particle sizes
from 15 to 45 µm were used in the experiment, and
the morphology of the IN718 powders is shown in
Fig. 1a. The chemical composition (wt.%) of the pow-
ders is shown in Table 1. The specimens were fabri-
cated on an SLM metal 3D printer (EOS 280) with a
fiber laser with a power of ∼ 400W, and the manufac-
turer’s recommended printing parameters were used.
During fabrication by SLM, a standard alternating
x/y raster strategy was chosen. This strategy features
bidirectional hatches of a layer ‘n’ performed in the
x-direction whilst the next layer ‘n+1’ turned 90◦ [16].
The final two kinds of dimensions of the specimens
were 10 × 10 × 10mm3 and 15 × 15 × 15mm3, and
the microstructure specimen and tensile specimen are
shown in Fig. 1b. The specimens were aged at 750◦C
and then solution treated at 1000◦C to investigate the
effect of δ phase precipitation on grain growth. Differ-
ent heat treatments are listed in Table 2.
The microstructure of the specimens was inves-

tigated with a COIC-900 Optical Microscope. X-ray

Fig. 1. (a) IN718 powders morphology and (b) the as-built
microstructures and tensile specimens.

diffraction patterns were obtained using a Bruker D8
diffractometer with CoKα radiation (λ = 1.790307 Å).
Diffraction patterns were recorded within the 2θ range
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Fig. 2. The microstructures of the top surface of the (a), (c) as-built and (b), (d) AS-1 specimens.

from 40◦ to 115◦ with a step size of 0.005◦. Tescan
Mira3 Scanning Electron Microscope was equipped
with an Ultim MaxN Energy Dispersive Spectroscopy
detector. The specimens were successively prepared
with waterproof abrasive papers from 800 to 2000
grit for metallographic observation. Mechanical pol-
ishing was performed using a diamond suspension
with a 0.05 µm colloidal silica suspension. Then, the
specimens were etched with a Kallings etchant of a
solution of 100 ml C2H5OH + 100ml HCl + 5 g
CuCl2. The Vickers hardness tests were carried out
using an HVS-1000A microhardness tester at a load
of 200 g and an indentation time of 10 s. The ten-
sile specimens were cut into dog-bone shapes from
the build cubes (Fig. 2b), with gauge dimensions of
3 mm in length, 1 mm in width, and 200µm in thick-
ness [17]. The dog-bone shape tensile specimens were
electropolished in a solution of 10 ml HClO4 + 90ml
C2H5OH, which was tested under uniaxial tension
along the building direction in an Instron 1000 tester
at a strain rate of 5 × 10−4 s−1 at room tempera-
ture.

3. Results and discussion

3.1. Microstructures of as-built and direct
solution specimens

The alloy powders were melted directly with a
high-energy laser beam in the SLM process. Figure 2
shows the microstructure of the as-built and AS-1
specimens. The molten pool boundary was formed
when the laser passed through adjacent metal powders
twice. The molten pool completely disappeared after
solution treatment, which means that recrystallization
occurred. The same phenomenon was also observed
at 1050◦C [4]. The chains of the Laves phase can be
seen in intragranular and grain boundaries, which be-
come granular after 2 h at 1000◦C (Figs. 2c,d) [18]. As
shown in Fig. 3, the γ phase has strong peaks, while
the Laves phase shows weak peaks. But no peaks of
the δ phase were detected. The δ phase cannot pre-
cipitate during the SLM process, which is responsible
for the high cooling rate and Nb consumption of the
Laves phase.
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Fig. 3. XRD patterns of (a) as-built and (b) AS-1 specimens.

Fig. 4a–d. Top, side surfaces, and corresponding microstructures of (a) and (d) DA-2, (b) DA-3, (c) DA-4 specimens.

3.2. δ phase precipitation under different heat
treatments

To obtain different amounts of the δ phase, the
specimens were aged at 750◦C for 8, 24, and 48 h. Fig-
ure 4 shows the metallographic structures of the speci-
mens under different aging times. The microstructures

after heat treatment maintained a similar morphology
to the as-built specimen, and molten pools still ex-
isted. In SLM-IN718, grains are columnar and paral-
lel to the build direction. Equiaxed grains can be seen
on the top surfaces (Figs. 4a–c), and the side surfaces
are columnar (Figs. 4b–f). The rapid cooling rate and
large temperature gradient lead to the orientation of
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Fig. 4g–i. Top, side surfaces, and corresponding microstructures of (g) DA-2, (e) and (h) DA-3 specimens,(e) and (f) DA-4
specimens.

grain growth in the SLM process. Figures 4g–i show
that the chain Laves phase decreased with increasing
aging time. The γ′′ phase became coarse, and more δ
phase precipitated. The δ phase precipitates faster at
750◦C than 700◦C [19]. Higher grain boundary energy
causes a favorable nucleation site of the δ phase. At
low temperatures, the transition from γ′′ to δ starts
from the grain boundary through cell reaction, while
the high-angle grain boundary increases [20, 21]. The

energy barrier of the γ′′ phase is lower than that of
δ phase, so the δ phase precipitates later than the
γ′′ phase. Then, the unstable γ” phase translates into
the stable δ phase. Zhang et al. [22] found that the γ′′

phase lost its coherent relationship with the matrix as
the γ′′ phase coarsened, and the coarsening process of
the γ′′ phase in IN718 was controlled by the volume
diffusion of Nb atoms in the matrix. Figure 5 shows
the EDS analysis of the δ phase in the DA-4 specimen,
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Fig. 5. (a) The δ phase in DA-4 specimens and (b) EDS
map.

which shows that Nb is the main element of the phase.
The δ phase precipitates next to the partially melted
Laves phase. Zhang et al. [23] noted Nb diffusion in
the dissolution process of the Laves phase. This pro-
moted the formation of γ′′ and the transformation of
γ′′ → δ.
Typical XRD patterns of SLM-processed Inconel

718 are depicted in Fig. 6, which are in good agree-
ment with some previous investigations on the con-
stitutional phases of laser-processed Inconel 718 [24,
25]. In general, strong diffraction peaks correspond-
ing to the γ matrix with an A1-ordered face-centered
cubic (fcc) crystal structure, and γ′′ Ni3Nb in a body-
centered tetragonal (bct) crystal structure were de-
tected. There was no precipitated δ phase after aging
at 750◦C for 8 h, but a few δ phases precipitated af-
ter aging at 750◦C for 24 h. Significant precipitated
peaks were detected after aging at 750◦C for 48 h,
which meant that a large amount of the δ phase pre-
cipitated.
Molten pools cannot be observed in Figs. 7a–f af-

Fig. 6. XRD patterns of (a) DA-2, DA-3, and DA-4 speci-
mens and (b) their partially enlarged detail.

ter 1000◦C solution treatment. The grain size and the
number of abnormally grown grains decrease with in-
creasing pre-aging time. As indicated by the arrow
in Fig. 7a, the partially dissolved Laves phase can
be observed. The γ′′ phase disappeared after solution
treatment at 1000◦C, whose dissolving temperature
is 870∼ 930◦C [26]. The δ phase dissolved after solu-
tion treatment at 1000◦C, and the pinning effect of
the δ phase on the grain boundary was weak. The
grain can easily grow and coarsen. There are a few
short-rod δ phases in the AS-4 specimen (Fig. 7i), and
weak peaks of the δ phase can still be observed (see
Fig. 8b). It might be that the superabundant δ phase
was not completely dissolved with aging at 750◦C for
48 h. Many studies [24, 27–29] have indicated that the
grain coarsening phenomenon is not obvious when the
solution temperature is between 980 and 1020◦C. In
addition, higher temperatures can provide more en-
ergy for grain growth. The δ phase was completely
dissolved and could not pin the grain boundary or
inhibit grain growth. The above results show that in-
creasing aging time increases the precipitation of the
phase, and the grains are refined.
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Fig. 7a–f. Top, side surfaces, and corresponding microstructures of (a) and (d) AS-2, (b) and (e) AS-3, (c), (e) and (f)
AS-4 specimens.

3.3. Mechanical properties of different heat
treatment specimens

Vickers hardness tests and tensile tests were car-
ried out to study the mechanical properties. Fig-
ure 9a shows the microhardness on the top sur-
faces of SLM-IN718. The maximum value is DA-4
(416 HV), followed by as-built (316 HV). The micro-
hardness of AS-1 and AS-4 is the lowest (270 and

285HV). After the aging treatment, the microhard-
ness of the DA-4 specimen experienced a significant
increase (32 %) compared to the as-built specimen.
Much of the δ phase precipitated during aging treat-
ment for 48 h and improved the microhardness of the
specimen. Compared with the as-built specimen, the
microhardness of AS-1 and AS-4 decreased by 15 and
10%, respectively, because almost all that remained
was the γ matrix after 1000◦C solution treatment (see
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Fig. 7g–i. Top, side surfaces, and corresponding microstructures of (g) AS-2, (h) AS-3 specimens, and (i) e short-rod
δ phases in the AS-4.

Fig. 8. XRD patterns of AS-2, AS-3, and AS-4 specimens.

Fig. 2d). The undissolved δ phase (Fig. 8b) in AS-4
resulted in a higher microhardness than AS-1.
The tensile test results of SLM-IN718 are presented

in Fig. 9b. Both the AS-1 and AS-4 specimens exhibit
better ductility than the as-built and DA-4 specimens,
while the ultimate strength and yield strength are ob-
viously disadvantaged compared to DA-4. The precip-

itation of the γ′′ and δ phases improved the strength of
the alloy in the aging process, but all the strengthen-
ing phases dissolved after solution treatment. Both the
ductility and strength of DA-4 are superior to those of
DA-1. DA-4 experienced a pre-aging process for 48 h,
which precipitated more δ phase. The δ phase can im-
prove the nucleation rate during recrystallization and
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Fig. 9. Mechanical properties of SLM-Inconel 718 under different heat treatments.

Fig. 10. Morphologies of tensile fracture surfaces at room temperature of (a) as-built, (b) AS-1, (c) DA-4, and (d) AS-4.

pin the grain boundaries [30, 31].
To further investigate the tensile properties of

SLM-IN718, the morphology of the tensile fracture
surfaces is shown in Fig. 10. Dimples can be seen
in four specimens. In general, larger dimples indicate
better plasticity. The DA-4 specimen with the small-
est dimples shows a transgranular fracture structure

(Fig. 10c), which corresponds to poor plasticity but
optimum strength. The γ′′ and δ phases precipitated
during the aging treatment play an important role in
improving the strength. The AS-1 and AS-4 speci-
mens have larger dimple structures and better ductil-
ity. Most precipitated phase is dissolved after 1000◦C
solution treatment for 2 h. Almost only the matrix
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phase is left in the alloy, so it has good plasticity.
Parameters such as the type of load and temperature
affect whether the material is brittle or ductile. How-
ever, metals with face-centered cubic structures are
not affected by temperature because of their low yield
strength and plentiful slip systems.

4. Conclusions

Metallographic and XRD characterizations indi-
cate that the precipitation of the δ phase increases
with aging time at 750◦C. Meanwhile, the pre-
precipitated δ phase led to the fine grain morphology
after 1000◦C solution treatment. The specimen aged
at 750◦C for 48 h (DA-4) had the optimum hardness
because of the precipitated γ′′ and δ phase in the ag-
ing state. The specimens that experienced only solu-
tion treatment (AS-1) and aging at 750◦C + solution
treatment (AS-4) had the lowest hardness. AS-4 had
better strength and plasticity than AS-1 because the
δ phase precipitated during the pre-aging treatment,
causing the grains to get fine.
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