Modeling of fluid-solid interfaces by the Discrete Wave Number FLORES-MENDEZ, E., CARBAJAL-ROMERO, M., ORTIZ-ALEMÁN, C., RODRÍGUEZ-SÁNCHEZ, J. E., RODRÍGUEZ-CASTELLANOS, A. vol. 50 (2012), no. 4, pp. 221 - 227 DOI: 10.4149/km_2012_4_221
Abstract This work shows the wave propagation in fluid-solid interfaces due to dynamic excitations. The interface connects an acoustic medium (fluid) and a solid one, a wide range of elastic solid materials is considered. By means of an analysis of diffracted waves in a fluid, it is possible to deduce the mechanical characteristics of the solid medium, specifically, its wave propagation velocity. For this purpose, the Discrete Wave Number method is formulated to deal with this problem. This method usually models ground motions, where the wave radiated from a source is expressed as the wave number integration. The validation was performed by means of results comparison with published research determined by Boundary Elements Method. Firstly, spectra of pressures for each solid material considered are displayed. Then, the Fast Fourier Transform algorithm to obtain results in the time domain is applied, where the emergence of Scholte's interface waves and the amount of energy that they carry are evinced. Key words interface waves, Scholte´s waves, elastic waves, fluid-solid interface, discrete wave number method Full text (253 KB)
|