[Kovove materialy - Metallic materials]
    Sun - November 24, 2024 - 08:40 No. of hits : 1801039 ISSN 1338-4252 (online) ISSN 0023-432X (printed)
© Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Bratislava, Slovak Republic

VOLUME 49 (2011), Issue 3

Thermal and mechanical stability of Mg based nanocomposite studied by internal friction measurements
TROJANOVA, Z., MAKOWSKA, A., RIEHEMANN, W., LUKAC, P.
vol. 49 (2011), no. 3, pp. 213 - 217
DOI: 10.4149/km_2011_3_213

Abstract
Magnesium matrix composites show improved wear resistance, enhanced strength and creep resistance in comparison with their monolithic counterparts, on the other hand they keep low density and good machinability. Internal friction measurements are suitable tool to detect changes in the microstructure of thermally or mechanically loaded composites. Samples from pure magnesium reinforced with zirconia nanoparticles were thermally cycled between room temperature and increasing upper temperature of thermal cycle. After thermal cycling amplitude dependence of decrement was measured. Very high values of the logarithmic decrement were ascribed to the poor binding between the matrix and ceramic nanoparticles. The influence of cyclic bending on the damping behaviour of the same nanocomposite was determined at room temperature. Measured decrease of the resonant frequency indicates the stiffness loss as a function of cycling. Observed decrease of amplitude independent component of decrement at the end of the sample life time is due to increase of the dislocation density. These dislocations can be absorbed by the interface. Crack deflection along an interface is followed by the separation of the particle/matrix interface.

Key words
magnesium nanocomposite, internal friction, dislocations, bending test, fatigue

[open article.pdf] Full text (239 KB)

[IMMS SAS]      UMMS SAV - Bratislava (SK) Personal data Protection   ver. 1.8.0      [go to HOME PAGE]
Full title of this journal is bilingual: Kovové materiály - Metallic Materials.
The official abbreviation in accordance with JCR ISI is Kovove Mater.


Article abstracts updated: 2024-11-05 11:34      
Articles in press revised: 2024-11-14 07:57     
Full text pdf uploaded: 2024-11-06 09:09    
Information updated: 2023-04-19 16:14   
Code last revised: 2024-03-06 11:13  

© OldSoft, 2004, …, 2024